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Effect of Specimen Thickness by Simulation of
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ABSTRACT: The evaluation of specimen thickness effect of fatigue crack growth life by the simulation of probabilistic fatigue crack
growth is presented. In this paper, the material resistance to fatigue crack growth is treated as a spatial stochastic process, which
varies randomly on the crack surface. Using the previous experimental data, the non-Gaussian (eventually Weibull, in this report)
random fields simulation method is applied This method is useful to estimate the probability distribution of fatigue crack growth life
and the variability due to specimen thickness by simulating material resistance to fatigue crack growth along a crack path.

1. INTRODUCTION

An accurate assessment of fatigue crack growth behavior is
important to the structural design of fatigue sensitive components.
The analysis is accomplished using a fracture mechanics approach
that is based on derived fatigue crack growth rate data (Paris
and Erdogan, 1963). However, these data, regardless of how
carefully they are generated, show considerable scatter which
depends on various uncontrolled factors, such as material
properties and metallurgical structwre, type of loading,
environment, and so on. Currently, this scatter of fatigue crack
growth data is commonly regarded as an inherent feature of
fatigue crack growth process (Sobczyk, 1993).

During the last two decades, experimental and theoretical
studies on the randomness of fatigue crack growth have been
reported (Virker, Hillbery and Goel, 1979; Tanaka, Ichikawa and
Akita, 1981; Kozin and Bogdanoff, 1989; Ortiz and Kiremidjian,
1989; Lapetra Mayo and Dominguez, 1996; Kim, 1999). Such a
model assumes the fatigue crack growth as a random process and,
therefore, needs to know the random nature of material parameters
before any practical application. For this purpose not only mean
and variance of crack growth rate but also the spatial distribution
of resistance are necessary. The authors studied the spatial
correlation of fatigue crack growth resistance of BS 4360 steel
Kim et al., 1993). The results clearly indicate that the effect of
autocorrelation function of fatigue crack growth resistance on the
specimen thickness has no significant influence, but the variance
increases with decreasing specimen thickness. And, the probability
distribution functions of the fatigue crack growth resistance
obtained from the experimental data are 3-parameter Weibull and

show a slight dependence on the specimen thickness of BS 4360
steel.

The effects of specimen thickness on fatigue crack growth
have been investigated by many workers (Putatunda and Rigsbee,
1985; Sasaki et al., 1991; Mcmaster et al., 1998; Shim and Kim,
1998) and the results reported in the literature are contradictory in
nature. Some workers have reported that specimen thickness had
no effect, whereas others have reported either an increase or
decrease in the crack growth rate with increasing specimen
thickness. But, it was found that there is scatter in their results.
And also, the variability of fatigue crack growth life seems to
increase with decreasing specimen thickness. However, most of
the studies were carried out under constant amplitude loading, and
they did not consider the statistical properties of fatigue crack
growth resistance and the effect of specimen thickness on the
parameters of probability distribution for crack growth life.

The purpose of the present study is, therefore, to evaluate the
effect of specimen thickness on the probability distribution of
fatigue crack growth life by using the non-Gaussian (especially,
Weibull) random fields simulation method (Yamazaki and
Shinozuka, 1986; Iiragaki er al, 1990; Kim et al, 2000).
Applying the previous experimental data (Kim, Itagaki and
Ishizuka, 1993), the fatigue crack growth curves were simulated
and analyzed for the different specimen thicknesses to determine
the probability distribution functions of the fatigue crack growth
life. And also, the effect of specimen thickness on the parameter
of fatigue crack growth life distribution was investigated.

2. PROBABILISTIC MODEL

Assuming Paris’ law (Paris and FErdogan, 1963), the crack
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growth rate is
L _ oK™ (1)

where, C and m are the material constants, ¢ is the fatigue crack
length, and N is the number of cycles to lead The material
constants m and C, hereinafter, called the growth rate exponent
and coefficient, rtespectively, are assumed random. For one
dimensional model of fatigue crack growth, they are the random
functions of crack length. It is, however, very difficult to
determine  separately these two random variables from the
observed crack growth data even under the test for the condition
of constant stress intensity factor range (Kim, 1999). And also,
for this purpose many experimental data are necessary. Since the
present study is to investigate the effect of specimen thickness on
inhomogeneity of fatigue crack growth resistance, it seems
unnecessary to use the stochastic model considering the
probabilistic properties of the parameters. Therefore, in the present
study, for random variables m and C, taking expectation of da/dN
gives:

%—a = [" fom(f’—ﬂ’(,) < £ ©) + fo(m)dCdm @

where, fo( ) and fu( +) are the probability density function of
random variables C and m, respectively. If /K is in constant
condition ahead of the crack path, the expectation values are
constant. Determining the value of “dz/dN from experimental
data for each specimen thickness, we introduce the dimensionless
parameter, S(x), which means the inhomogeneity of material
properties to fatigue crack growth in front of the crack, then
da/dN is written by

da 1 da

dN = S(x) " dN

“da
= ©)

or S(x)= % .

hereinafter, S(x), is called as the growth resistance coefficient of
material to fatigue crack growth, namely the crack growth
resistance coefficient.

The spatial stochastic process S(x) is assumed to be a stationary
and ergodic process but not necessarily Gaussian, and its
autocorrelation function and probability distribution function are
determined from experimental data. Usihg these properties, the
random process S(x) is simulated, and then, the fatigue crack
growth.

3. PREVIOUS EXPERIMENTAL DATA

In the following the experimental results with a high tensile
strength steel, BS 4360 (GR50D), for marine structures are cited

from reference (Kim, Itagaki and Ishizuka, 1993) as an example.
The experimental results are listed in Table 1. The test
variables are given in the table.

Table 1 Test variables and the resuits

Thickness | Specimen FCGR COV of S(x)

(mm) No. (X 10™*mmy/cycle) (%)
2BS01 1.62 79

2BS02 1.73 9.8

2BS03 171 10.8

2BS04 178 79

2BS05 1.80 8.3

18 2BS06 1.74 10.7
2BS07 1.73 95

2BS09 1.76 105

2BS10 1.64 12.4

2BS11 1.59 113

12BS1 1.24 129

1 12BS4 148 16.4
12BS5 1.38 132

12BS6 1.31 6.4

6BS1 145 114

6 6BS2 1.33 158
6BS3 116 15.1

One of the examples of the obtained data is shown in Figure
1, the growth rate, dg/dN is plotted against crack length, a,
together with 4K/ AK. As shown in the figure, the range of the
stress intensity factor is well controlled and its coefficient of
variation is about 0.2 percent. Even under these carefully
controlled conditions, the observed crack growth rates have
remarkable fluctuations. - Throughout the tests all the same figures
are obtained.
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Figure 1 Fatigue crack growth rate versus crack length
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The autocorrelation function reflects the correlation between
observations of the stochastic process. It was clear from the
previous results (Kim, Itagaki and Ishizuka, 1993) that the
autocorrelation functions are almost independent of the specimen
thickness of the BS 4360 steel, except for the origin, R(0). The
variance increases with decreasing specimen thickness. The rate of
decay was very rapid. The exponential function seems to be a
reasonable shape.

The probability distribution functions of the material resistance
coefficients obtained from the experimental data are three
parameter Weibull and showed a slight dependence on the
specimen thickness (Kim, Itagaki and Ishizuka, 1993). The
distribution function is ex as:

F{(Sla, B, 7)=1—exp[— (%)a] @

where, o is the shape parameter, 8 is the scale parameter and
y is the location parameter.

4. THE RESULTS OF SIMULATION AND
DISCUSSION

To simulate the fatigue crack growth in a given specimen
thickness, it is necessary to generate a series of S(x) along the
crack path. For the simulation of S(x), a non-Gaussian random
process simulation method proposed by Yamazaki (Yamazaki and
Shinozuka, 1986) are applied for random process S(x) with the
obtained autocorrelation function, R(7) =exp(—1.0/d), and
probability distribution function, F(Sla,8,7)(a=4.5, =105, 7y
=0.61 for 6mm specimens; =42, A=1.05, y=0.54 for 12mm
specimens; 2=4.0, =107, y=052 for 18mm specimens), which
was obtained by Kim er al. (1993). In the simulation, the FFT
size is taken 2048. The crack length increment, Ja, is fixed to
0.4mm.

Given a initial crack length a,, the relation between the crack
length, a, and the number of cycles, N, can be determined by the
simulated data of S(x) (Kim et al, 2000). 100 simulated a~N
curves for each specimen thickness are shown in Figure 2, where
the crack length @y is 25.0mm, and the predetermined crack
length ar is 50.2mm. Comparing the results of the simulations
with the previous experimental data (Kim et al, 1993), it can be
said that the simulated a~N curves describe the experimental data
very well. From these curves the probability distribution of fatigue
crack growth life can be estimated. The varability of fatigue
crack growth life seems to increase with decreasing the specimen
thickness.

As one of the examples, the fatigue crack growth lives, Ma),
for 6, 12 and 18mm thickness obtained by the simulation are

plotted on the Weibull probability paper in Figure 3. It is thought
that the location parameter, 7, Weibull distribution
function must be used. Therefore, 3-parameter Weibull distribution
function is used to fit the data. The parameters o, 8 and 7y are
estimated by the direct search of optimization method (Buto,
Sugie and Okazaki, 1977). The estimated functions are also shown

in the
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Figure 2 a-N curves under constant /K
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Figure 3 Weibull plots of the simulated life ( AK =28 MPaV m)

Table 2 The estimated Weibull parameters (ap=25.0mm)

Thickness | final crack | Parameter of Weibull Distribution
(mm) (ag) 7] B 7

30.2 424 31705 22323

18 402 3.99 91793 73391
50.2 3.06 151947 130948

30.2 2.68 40617 27085

12 402 2.68 116721 87057
50.2 2.47 192544 151415

302 3.62 42897 24704

6 40.2 2.32 124026 90060
50.2 1.92 204448 157157

in the Table 2. It can be said that the fatigue crack growth life,
N(a), follows 3-parameter Weibull distribution.

The simulation method is useful for estimation of the
probability distribution of fatigue crack growth life and reliability
assessment of structures by simulating material resistance to
fatigue crack growth.

Figure 4 shows the effect of specimen thickness on Weibull
probability of the fatigue crack growth life. It is evident from this
figure that there is no negligible influence of specimen thickness
on the probability distribution of the fatigue crack growth life.
The Weibull shape parameter, ¢, is increased by increasing the
specimen thickness, but the scale parameter, A, and location
parameter, y are decreased.

Figure 5 shows the effect of the specimen thickness on the
variance of fatigue crack growth life. Our results indicate that
specimen thickness have significant influence on the variance of
fatigne crack growth life for BS 4360 steel. The variance
increases with decreasing specimen thickness. This is a good
agreement with the experimental results.
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Figure 4 Effect of specimen thickness on Weibull probability
distribution of the fatigue crack growth life

—235—



6
‘ a a,=50.2mm
5l —0O— Use Weibull parameter
—&— Use Data
S
—t
=
2 °T
[ 2
§ 1 \
0.
1} \
N
o 1 1 ,

Specimen thickness, B (mm)

Figure 5 Effect of specimen thickness on the variance of fatigue
crack growth life

Figme 6 shows the effect of specimen thickness on the
normalized COV for 6mm thickness. In these figures the
coefficient of variation is decreased by increasing the specimen
thickness. It is evident that specimen thickness has apparent
influence on fatigue crack growth life of BS 4360 steel in the
thickness range investigated in this study. And also, the coefficient
of variation of M) is observed to decrease as the crack grows
longer. But, for the 6mm specimen thickness, the coefficient of
variation of M(g) is almost same although the crack grows. The
coefficient of variation for specimen of 6mm thickness is
approximately 12 percent for the first 32..6mm growth increment
and approximately 11.5 percent at the final crack length.

5. CONCLUSIONS

For the simulation of probabilistic fatigue crack growth, the
non-Gaussian random process simulation method is applied for
random process S(x) with the obtained autocorrelation function and
probability distribution function. The probability distribution of the
fatigue crack length after a given number of load cycles or that
of the mmber of load cycles for a crack to reach a given length
can be estimated by repeating such simulations. The merit of the
presented method is that only a small number of tests are
required to estimate the probability distribution function of fatigue
crack growth life.

The probability distribution function of .the fatigue crack growth
life seems to follow a 3-parameter Weibull and show a slight
dependence: on the specimen thickness. The shape parameter, a,
is increased by increasing the specimen thickness, but the scale
parameter, S, and location parameter, y are decreased. The
variance of fatigue crack growth life, Ma), and the coefficient of
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Figure 6 Effect of specimen thickness on the coefficient of
variation (COV) of fatigue crack growth life

variation is decreased by increasing the specimen thickness.
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