• Title/Summary/Keyword: probabilistic demand model

Search Result 65, Processing Time 0.031 seconds

Reliability based seismic fragility analysis of bridge

  • Kia, M.;Bayat, M.;Emadi, A.;Kutanaei, S. Soleimani;Ahmadi, H.R
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • In this paper, a reliability-based approach has been implemented to develop seismic analytical fragility curves of highway bridges. A typical bridge class of the Central and South-eastern United States (CSUS) region was selected. Detailed finite element modelling is presented and Incremental Dynamic Analysis (IDA) is used to capture the behavior of the bridge from linear to nonlinear behavior. Bayesian linear regression method is used to define the demand model. A reliability approach is implemented to generate the analytical fragility curves and the proposed approach is compared with the conventional fragility analysis procedure.

Design of Cellular Manufacturing System with Alternative Process Plans under Uncertain Demand (수요가 불확실한 환경에서 대체공정계획을 고려한 셀형제조시스템 설계)

  • Ko, Chang-Seong;Lee, Sang-Hun;Lee, Yang-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.559-569
    • /
    • 1998
  • Cellular manufacturing system (CMS) has been recognized as an alternative to improve manufacturing productivity in conventional batch-type manufacturing systems through reducing set-up times, work-in-process inventories and throughput times by means of group technology. Most of the studies on the design of CMS assumed that each part has a unique process plan, and that its demand is known as a deterministic value despite of the probabilistic nature of the real world problems. This study suggests an approach for designing CMS, considering both alternative process plans and uncertain demand. A mathematical model is presented to show how to minimize the expected amortized and operating costs satisfying these two relaxations. Four heuristic algorithms are developed based on tabu search which is well suited for getting an optimal or near-optimal solution. Example problems are carried out to illustrate the heuristic algorithms and each of them is compared with the deterministic counterpart.

  • PDF

AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants (원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발)

  • 김재환;정원대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

Re-visitation Choice Impacts of Consideration on Sustainable Tourism Development - Using Logit and Probit Models - (지속가능한 관광개발 의식이 지역 재방문 선택에 미치는 영향 - 로짓모형과 프로빗모형을 활용하여 -)

  • Shin, Sang-Hyun;Yun, Hee-Jeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • Re-visitation have an effect on dependent variables of regional tourism demand model. This study focused on the re-visitation impacts of consideration on sustainable tourism development of tourists as a new factors of tourism. Based on literature reviews, 11 variables were selected, a questionnaire survey was given to 406 tourists divided into 5 tourism sites at Chuncheon city, and logit model and probit model were used for analysis. The fitness levels of two models were very significant(p=0.0000). The study results suggest that the likelihood of the rural tourist to make a return visit is influenced by recognition of sustainable tourism, purchase of souvenir and farm produce, visitation of regional shops, conversation with regional residents, residents' participation on development, age and marriage. The results of such re-visitation demand can provide information for regional development strategies. The approach to re-visitation research impacts of consideration on sustainable tourism development is expected to become a useful foundation in studying on sustainable regional development.

Probabilistic Neural Network for Prediction of Leakage in Water Distribution Network (급배수관망 누수예측을 위한 확률신경망)

  • Ha, Sung-Ryong;Ryu, Youn-Hee;Park, Sang-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.799-811
    • /
    • 2006
  • As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.

Harmonics Analysis of Railroad Systems using Probabilistic Approach (철도계통 고조파 분석에 확률론적 방법 적용)

  • Song, Hak-Seon;Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.214-216
    • /
    • 2005
  • A magnitude of generated harmonic currents along with the operation of traction has nonlinear characteristics. The harmonic currents generated along with the operating speed of electrical railroad traction is to analyze very difficulty. This paper therefore presents probabilistic approach for the harmonic currents evaluation about the operating speed of the arbitrary single traction. To use probabilistic method for railroad system, probability density function(PDF) using measuring data based on the realistic harmonic currents per operating speed is calculated. Mean and variance of harmonic currents of single traction also are obtained the PDF of the operating speed and electrical railroad traction model. Uncertainty of harmonic currents expects to results through mean and variance with PDF. The probability of harmonic currents generated with the operating of arbitrary many tractions is calculated by the convolution of functions. The harmonics of different number of tractions are systematically investigated. It is assessed by the total demand distortion(TDD) for the railroad system.

  • PDF

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

Probabilistic Risk Assessment for Construction Projects (건설공사의 확률적 위험도분석평가)

  • 조효남;임종권;김광섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.24-31
    • /
    • 1997
  • Recently, in Korea, demand for establishment of systematic risk assessment techniques for construction projects has increased, especially after the large construction failures occurred during construction such as New Haengju Bridge construction projects, subway construction projects, gas explosion accidents etc. Most of existing risk analysis modeling techniques such as Event Tree Analysis and Fault Tree Analysis may not be available for realistic risk assessment of construction projects because it is very complex and difficult to estimate occurrence frequency and failure probability precisely due to a lack of data related to the various risks inherent in construction projects like natural disasters, financial and economic risks, political risks, environmental risks as well as design and construction-related risks. Therefor the main objective of this paper is to suggest systematic probabilistic risk assessment model and demonstrate an approach for probabilistic risk assessment using advanced Event Tree Analysis introducing Fuzzy set theory concepts. It may be stated that the Fuzzy Event Tree AnaIysis may be very usefu1 for the systematic and rational risk assessment for real constructions problems because the approach is able to effectively deal with all the related construction risks in terms of the linguistic variables that incorporate systematically expert's experiences and subjective judgement.

  • PDF

Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine (조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측)

  • Kim, Soo-Hyun;Sun, Young-Ghyu;Lee, Dong-gu;Sim, Is-sac;Hwang, Yu-Min;Kim, Hyun-Soo;Kim, Hyung-suk;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.127-133
    • /
    • 2019
  • Electric power demand forecasting is one of the important research areas for future smart grid introduction. However, It is difficult to predict because it is affected by many external factors. Traditional methods of forecasting power demand have been limited in making accurate prediction because they use raw power data. In this paper, a probability-based CRBM is proposed to solve the problem of electric power demand prediction using raw power data. The stochastic model is suitable to capture the probabilistic characteristics of electric power data. In order to compare the mid-term power demand forecasting performance of the proposed model, we compared the performance with Recurrent Neural Network(RNN). Performance comparison using electric power data provided by the University of Massachusetts showed that the proposed algorithm results in better performance in mid-term energy demand forecasting.