DOI QR코드

DOI QR Code

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Received : 2017.02.14
  • Accepted : 2017.06.08
  • Published : 2017.12.25

Abstract

Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

Keywords

References

  1. D. Zhang, S. Evangelisti, P. Lettieri, and L. G. Papageorgiou, Energy Convers. Manage., 110, 113 (2016). [DOI: https://doi.org/10.1016/j.enconman.2015.11.056]
  2. M. Elsied, A. Oukaour, H. Gualous, and O.A.L. Brutto, Energy Convers. Manage., 122, 182 (2016). [DOI: https://doi.org/10.1016/j.enconman.2016.05.074]
  3. T. Sattarpour and M. Farsadi, Int. Trans. Electr. Energy Syst., 27, e2234 (2016). [DOI: https://doi.org/10.1002/etep.2234].
  4. A. Zakariazadeh, S. Jadid, and P. Siano, Electr. Power Energy Syst., 63, 523 (2014). [DOI: https://doi.org/10.1016/j.ijepes.2014.06.037]
  5. T. Niknam, F. Golestaneh, and A. Malekpour, Energy, 43, 427 (2012). [DOI: https://doi.org/10.1016/j.energy.2012.03.064]
  6. K. Kuroda, H. Magori, R. Yokoyama, D. Kobayashi, and T. Ichimura, Proc. 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA) (IEEE, Kuala Lumpur, Malaysia, 2014) p. 470. [DOI: https://doi.org/10.1109/ISGTAsia.2014.6873837]
  7. A. Zakariazadeh, S. Jadid, and P. Siano, Energy Convers. Manage., 78, 151 (2014). [DOI: https://doi.org/10.1016/j.enconman.2013.10.051]
  8. K. H. Chua, Y. S. Lim, and S. Morris, Energy Convers. Manage., 106, 1071 (2015). [DOI: https://doi.org/10.1016/j.enconman.2015.10.041]
  9. H. Saboori, R. Hemmati, and V. Abbasi, Energy Convers. Manage., 105, 938 (2015). [DOI: https://doi.org/10.1016/j.enconman.2015.08.055]
  10. C. Suazo-Martínez, E. Pereira-Bonvallet, R. Palma-Behnke, and X. P. Zhang, IEEE T. Smart Grid, 5, 1110 (2014). [DOI: https://doi.org/10.1109/TSG.2013.2281828]
  11. H. T. Le, S. Santoso, and T. Q. Nguyen, IEEE Trans. Power Syst., 27, 161 (2012). [DOI: https://doi.org/10.1109/TPWRS.2011.2165302]
  12. A.S.A. Awad, T.H.M. El-Fouly, and M.M.A. Salama, IEEE T. Smart Grid, 5, 2339 (2014). [DOI: https://doi.org/10.1109/TSG.2014.2316197]
  13. T. Ackermann (Ed.) Wind Power in Power Systems(JohnWiley&Sons, UK, 2005).
  14. T. Niknam, F. Golestaneh, and A. Malekpour, Energy, 43, 427 (2012). [DOI: https://doi.org/10.1016/j.energy.2012.03.064]
  15. C. L. Su, IEEE Trans. Power Syst., 20, 1843 (2005). [DOI: https://doi.org/10.1109/TPWRS.2005.857921]
  16. G. Mokryani and P. Siano, Electr. Power Energy Syst., 53, 244 (2013). [DOI: https://doi.org/10.1016/j.ijepes.2013.04.019]
  17. P. Siano and G. Mokryani, IEEE Trans. Power Syst., 28, 4209 (2013). [DOI: https://doi.org/10.1109/TPWRS.2013.2270378]
  18. P. Siano and G. Mokryani, IEEE Trans. Power Syst., 28, 3852 (2013). [DOI: https://doi.org/10.1109/TPWRS.2013.2273567]
  19. S. Golshannavaz, J. Intell. Fuzzy Syst., 27, 1719 (2014). [DOI: https://doi.org/10.3233/IFS-141138]
  20. A. Soroudi, M. Aien, and M. Ehsan, IEEE Syst. J., 6, 254 (2012). [DOI: https://doi.org/10.1109/JSYST.2011.2162994]
  21. S. A. Arefifar and Y.A.R.I. Mohamed, IEEE T. Smart Grid, 5, 1835 (2014). [DOI: https://doi.org/10.1109/TSG.2014.2307919]
  22. D. A. Pavluchenko and V. Z. Manusov, Euro. Trans. Electr. Power, 16, 569 (2006). [DOI: https://doi.org/10.1002/etep.104]
  23. R. Poudineh and T. Jamasb, Energy Policy, 67, 222 (2014). [DOI: https://doi.org/10.1016/j.enpol.2013.11.073]
  24. Y. M. Atwa and E. F. El-Saadany, IEEE Trans. Power Syst., 25, 1815 (2010). [DOI: https://doi.org/10.1109/TPWRS.2010.2045663]
  25. P. Garcia, J. P. Torreglosa, L. M. Fernandez, and F. Jurado, Int. J. Hydrogen Energy, 38, 14146 (2013). [DOI: https://doi.org/10.1016/j.ijhydene.2013.08.106]
  26. S. Singh and S. Agrawal, Energy Convers. Manage., 122, 449 (2016). [DOI: https://doi.org/10.1016/j.enconman.2016.06.010]
  27. K. H. Kim, K. B. Song, S. K. Joo, Y. J. Lee, and J. O. Kim, Eur. T. Electr. Power, 18, 217 (2008). [DOI: https://doi.org/10.1002/etep.226]
  28. S. Singh and S. Agrawal, Energy Convers. Manage., 105, 763 (2015). [DOI: https://doi.org/10.1016/j.enconman.2015.08.027]
  29. T. Sattarpour, D. Nazarpour, S. Golshannavaz, and P. Siano, J. Electr. Eng. Technol., 10, 804 (2015). [DOI: https://doi.org/10.5370/JEET.2015.10.3.804]
  30. G. Celli and F. Pilo, Proc. 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications (IEEE, Sydney, Australia, 2001) p. 81. [DOI: https://doi.org/10.1109/PICA.2001.932323]
  31. A.S.A. Awad, T.H.M. El-Fouly, and M.M.A. Salama, IEEE Trans. Power Syst., 30, 327 (2015). [DOI: https://doi.org/10.1109/TPWRS.2014.2326044]
  32. S. Chandramohan, N. Atturulu, R. P. Kumudini Devi, and B. Venkatesh, Power Energy Syst., 32, 126 (2010). [DOI: https://doi.org/10.1016/j.ijepes.2009.06.023]