• Title/Summary/Keyword: probabilistic behaviors

Search Result 45, Processing Time 0.021 seconds

Friendship Influence on Mobile Behavior of Location Based Social Network Users

  • Song, Yang;Hu, Zheng;Leng, Xiaoming;Tian, Hui;Yang, Kun;Ke, Xin
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • In mobile computing research area, it is highly desirable to understand the characteristics of user movement so that the user friendly location aware services could be rendered effectively. Location based social networks (LBSNs) have flourished recently and are of great potential for movement behavior exploration and datadriven application design. While there have been some efforts on user check-in movement behavior in LBSNs, they lack comprehensive analysis of social influence on them. To this end, the social-spatial influence and social-temporal influence are analyzed synthetically in this paper based on the related information exposed in LBSNs. The check-in movement behaviors of users are found to be affected by their social friendships both from spatial and temporal dimensions. Furthermore, a probabilistic model of user mobile behavior is proposed, incorporating the comprehensive social influence model with extent personal preference model. The experimental results validate that our proposed model can improve prediction accuracy compared to the state-of-the-art social historical model considering temporal information (SHM+T), which mainly studies the temporal cyclic patterns and uses them to model user mobility, while being with affordable complexity.

Estimation of Residual Useful Life and Tracking of Real-time Damage Paths of Rubble-Mound Breakwaters Using Stochastic Wiener Process (추계학적 위너 확률과정을 이용한 경사제의 실시간 피해경로 추적과 잔류수명 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.147-160
    • /
    • 2020
  • A stochastic probabilistic model for harbor structures such as rubble-mound breakwater has been formulated by using the generalized Wiener process considering the nonlinearity of damage drift and its nonlinear uncertainty, by which the damage path with real-time can be tracked, the residual useful lifetime at some age can also be analyzed properly. The formulated stochastic model can easily calculate the probability of failure with the passage of time through the probability density function of cumulative damage. In particular, the probability density functions of residual useful lifetime of the existing harbor structures can be derived, which can take into account the current age, its present damage state and the future damage process to be occurred. By using the maximum likelihood method and the least square method together, the involved parameters in the stochastic model can be estimated. In the calibration of the stochastic model presented in this paper, the present results are very well similar with the results of MCS about tracking of the damage paths as well as evaluating of the density functions of the cumulative damage and the residual useful lifetime. MTTF and MRL are also evaluated exactly. Meanwhile, the stochastic probabilistic model has been applied to the rubble-mound breakwater. The related parameters can be estimated by using the experimental data of the cumulative damages of armor units measured as a function of time. The theoretical results about the probability density function of cumulative damage and the probability of failure are very well agreed with MCS results such that the density functions of the cumulative damage tend to move to rightward and the amounts of its uncertainty are increased as the elapsed time goes on. Thus, the probabilities of failure with the elapsed time are also increased sharply. Finally, the behaviors of residual useful lifetime have been investigated with the elapsed age. It is concluded for rubble-mound breakwaters that the probability density functions of residual useful lifetime tends to have a longer tail in the right side rather than the left side because of the gradual increases of cumulative damage of armor units. Therefore, its MRLs are sharply decreased after some age. In this paper, the special attentions are paid to the relationship of MTTF and MRL and the elapsed age of the existing structure. In spite of that the sum of the elapsed age and MRL must be equal to MTTF deterministically, the large difference has been shown as the elapsed age is increased which is due to the uncertainty of cumulative damage to be occurred in the future.

A Study on the Architectural Environment as a Combination of Performance and Event (퍼포먼스.이벤트의 결합체로서 건축환경연구)

  • 김주미
    • Archives of design research
    • /
    • v.14
    • /
    • pp.121-138
    • /
    • 1996
  • The purpose of this study is to develop a new architectural language and design strategies that would anticipate and incorporate new historical situations and new paradigms to understand the world. It consists of four sections as follows: First, it presents a new interpretation of space, human body, and movement that we find in modern art and tries to combine that new artistic insight with environmental design to provide a theoretical basis for performance-event architecture. Second, it conceives of architectural environment as a combination of space, movement, and probabilistic situations rather than a mere conglomeration of material. It also perceives the environment as a stage for performance and the act of designing as a performance. Third, in this context, man is conceived of as an organic system that responds to, interacts with, and adapts himself to his environment through self-regulation. By the same token, architecture should be a dynamic system that undergoes a constant transformation in its attempt to accommodate human actions and behaviors as he copes with the contemporary philosophy characterized by the principle of uncertainty, fast-changing society, and the new developments in technology. Fourth, the relativistic and organic view-point that constitutes the background for all this is radically different from the causalistic and mechanistic view that characterized the forms and functions of modernistic design. The present study places a great emphases on dematerialistic conception of environment and puts forth a disprogramming method that would accommodate interchangeability in the passage of time and the intertextuality of form and function. In the event, performance-event architecture is a strategy based on the systems world-view that would enable the recovery of man's autonomy and the reconception of his environment as an object of art.

  • PDF

Uncertainty Analysis of Wave Forces on Upright Sections of Composite Breakwaters (혼성제 직립벽에 작용하는 파력의 불확실성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.258-264
    • /
    • 2011
  • A MCS technique is represented to stochastically analyze the uncertainties of wave forces exerted on the upright sections of composite breakwaters. A stochastical models for horizontal and uplift wave forces can be straightforwardly formulated as a function of the probabilistic characteristics of maximum wave height. Under the assumption of wave forces followed by extreme distribution, the behaviors of relative wave forces to Goda's wave forces are studied by the MCS technique. Double-truncated normal distribution is applied to take the effects of uncertainties of scale and shape parameters of extreme distribution into account properly. Averages and variances of relative wave forces are quantitatively calculated with respect to the exceedance probabilities of maximum design wave height. It is found that the averages of relative wave forces may be decreased consistently with the increases of the exceedance probabilities. In particular, the averages on uplift wave force are evaluated slightly larger than those on horizontal wave force, but the variations of coefficient of the former are adversely smaller than those of the latter. It means that the uncertainties of uplift wave forces are smaller than those of horizontal wave forces in the same condition of the exceedance probabilities. Therefore, the present results could be useful to the reliability based-design method that require the statistical properties about the uncertainties of wave forces.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.