• 제목/요약/키워드: privacy metric

검색결과 11건 처리시간 0.017초

A Framework for measuring query privacy in Location-based Service

  • Zhang, Xuejun;Gui, Xiaolin;Tian, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1717-1732
    • /
    • 2015
  • The widespread use of location-based services (LBSs), which allows untrusted service provider to collect large number of user request records, leads to serious privacy concerns. In response to these issues, a number of LBS privacy protection mechanisms (LPPMs) have been recently proposed. However, the evaluation of these LPPMs usually disregards the background knowledge that the adversary may possess about users' contextual information, which runs the risk of wrongly evaluating users' query privacy. In this paper, we address these issues by proposing a generic formal quantification framework,which comprehensively contemplate the various elements that influence the query privacy of users and explicitly states the knowledge that an adversary might have in the context of query privacy. Moreover, a way to model the adversary's attack on query privacy is proposed, which allows us to show the insufficiency of the existing query privacy metrics, e.g., k-anonymity. Thus we propose two new metrics: entropy anonymity and mutual information anonymity. Lastly, we run a set of experiments on datasets generated by network based generator of moving objects proposed by Thomas Brinkhoff. The results show the effectiveness and efficient of our framework to measure the LPPM.

A Solution to Privacy Preservation in Publishing Human Trajectories

  • Li, Xianming;Sun, Guangzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3328-3349
    • /
    • 2020
  • With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users' privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users' behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users' privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary's background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users' privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.

프라이버시 보존형 데이터 마이닝 방법 및 척도 분석 (Privacy Preserving Data Mining Methods and Metrics Analysis)

  • 홍은주;홍도원;서창호
    • 디지털융복합연구
    • /
    • 제16권10호
    • /
    • pp.445-452
    • /
    • 2018
  • 생활의 모든 것들이 데이터화 되어가고 있는 세상에서 데이터의 양은 기하급수적으로 증가하고 있다. 이러한 데이터는 수집 및 분석을 통하여 새로운 데이터로 가공되어진다. 새로운 데이터는 병원, 금융, 기업 등 여러 분야에서 다양한 용도로 사용되고 있다. 그러나 기존의 데이터에는 개인들의 민감한 정보가 포함되어 있기 때문에 수집 및 분석과정에서 개인의 프라이버시 노출 우려가 있다. 해결 방안으로 프라이버시 보존형 데이터 마이닝(PPDM)기술이 있다. PPDM은 프라이버시를 보존하면서 동시에 데이터로부터 유용한 정보를 추출하는 방법이다. 본 논문에서는 PPDM을 조사하고 데이터의 프라이버시와 유틸리티를 평가하기 위한 다양한 측정방법을 분석한다.

이동 객체 정보 보호를 위한 그리드 기반 시멘틱 클로킹 기법 (Grid-based Semantic Cloaking Method for Continuous Moving Object Anonymization)

  • 장욱;신숭선;김경배;배해영
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.47-57
    • /
    • 2013
  • 최근 스마트폰의 발전에 따라서 많은 위치 기반 서비스가 활용되고 있으며, 위치 정보 노출로 인한 문제점이 사회적 이슈로 대두되고 있다. 기존의 잘 알려진 위치 정보 보호를 위한 공간 클로킹 기법은 사용자가 요청한 지역에서 위치 정보를 흐릿하게 처리하였다. 하지만 계속적으로 움직이는 이동 객체의 모든 지역을 클로킹하기에는 범위공간이 무수히 넓어지는 문제를 가진다. 따라서, 본 논문에서는 이동 객체 정보 보호를 위한 그리드 기반 시멘틱 클로킹 기법을 제안한다. 제안 기법은 시멘틱 클로킹을 위하여 EMD 갱신 스키마를 확장하고 이동 객체를 위한 대표 보호지역의 클로킹을 정의하였다. 성능 평가에서는 제안 기법이 기존 기법에 비해 처리 시간과 공간 범위에서 안전성과 효율성을 높였다. 이를 통해, 성공적으로 다양한 적으로부터 지속적으로 움직이는 객체의 위치 개인 정보를 보호하여 기존의 방법을 능가하는 성능을 보인다.

Applying Metricized Knowledge Abstraction Hierarchy for Securely Personalized Context-Aware Cooperative Query

  • Kwon Oh-Byung;Shin Myung-Geun;Kim In-Jun
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.354-360
    • /
    • 2006
  • The purpose of this paper is to propose a securely personalized context-aware cooperative query that supports a multi-level data abstraction hierarchy and conceptual distance metric among data values, while considering privacy concerns around user context awareness. The conceptual distance expresses a semantic similarity among data values with a quantitative measure, and thus the conceptual distance enables query results to be ranked. To show the feasibility of the methodology proposed in this paper we have implemented a prototype system in the area of site search in a large-scale shopping mall.

  • PDF

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • 한국멀티미디어학회논문지
    • /
    • 제16권10호
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

개인정보보호를 위한 리스크 모니터링: 경고맵 (Developing Warning Map for Risk Monitoring on Personal Information Security)

  • 이영재;신상철;민금영
    • 한국재난관리표준학회지
    • /
    • 제1권4호
    • /
    • pp.33-40
    • /
    • 2008
  • 본 연구에서는 최근 사회적 이슈로 등장하고, 빈번하게 대형 사고가 발생하는 개인정보 보안 사고에 대하여 사전에 탐지하여 예방할 수 있는 개인정보보호를 위한 리스크 모니터링 모델을 제시한다. 이를 위하여 개인정보 및 개인정보보호 업무를 정의하고, 개인정보 생명주기에 따른 리스크를 식별한다. 식별된 리스크는 전문가 설문을 통하여 우선관리대상 리스크를 선정하고, Fishbone Diagram을 활용하여 리스크 요인을 도출한다. 리스크 요인들은 지표로서 각 측정 단위와 임계치를 보유하며, 개인정보보호 업무와 리스크에 따라 지표의 값을 가지고 판단하는 경고맵을 개발한다.

  • PDF

FedGCD: Federated Learning Algorithm with GNN based Community Detection for Heterogeneous Data

  • Wooseok Shin;Jitae Shin
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.1-11
    • /
    • 2023
  • Federated learning (FL) is a ground breaking machine learning paradigm that allow smultiple participants to collaboratively train models in a cloud environment, all while maintaining the privacy of their raw data. This approach is in valuable in applications involving sensitive or geographically distributed data. However, one of the challenges in FL is dealing with heterogeneous and non-independent and identically distributed (non-IID) data across participants, which can result in suboptimal model performance compared to traditionalmachine learning methods. To tackle this, we introduce FedGCD, a novel FL algorithm that employs Graph Neural Network (GNN)-based community detection to enhance model convergence in federated settings. In our experiments, FedGCD consistently outperformed existing FL algorithms in various scenarios: for instance, in a non-IID environment, it achieved an accuracy of 0.9113, a precision of 0.8798,and an F1-Score of 0.8972. In a semi-IID setting, it demonstrated the highest accuracy at 0.9315 and an impressive F1-Score of 0.9312. We also introduce a new metric, nonIIDness, to quantitatively measure the degree of data heterogeneity. Our results indicate that FedGCD not only addresses the challenges of data heterogeneity and non-IIDness but also sets new benchmarks for FL algorithms. The community detection approach adopted in FedGCD has broader implications, suggesting that it could be adapted for other distributed machine learning scenarios, thereby improving model performance and convergence across a range of applications.

위협 모델링 도구의 사용성 평가기준 도출 (Deriving Usability Evaluation Criteria for Threat Modeling Tools)

  • 황인노;신영섭;조현석;김승주
    • 정보보호학회논문지
    • /
    • 제34권4호
    • /
    • pp.763-780
    • /
    • 2024
  • 대내외 환경이 급격하게 변화함에 따라, 기업이 직면하는 보안 위협에 대한 보호대책 구현의 중요성이 점차 증대되고 있다. 이러한 상황에서 설계 초기 단계부터 보안을 접목하는 SbD(Security by Design, 보안내재화) 접근법의 필요성이 부각되고 있으며, 위협 모델링은 SbD의 핵심적인 도구로 인식되고 있다. 특히, 비용과 시간을 절약하기 위해 보안 문제를 조기에 발견하고 해결하는 Shift Left 전략의 적용을 위해서는 소프트웨어 개발자와 같은 보안 전문성이 부족한 직원의 위협 모델링 수행이 요구된다. 다양한 자동화된 위협 모델링 도구들이 출시되고 있으나, 보안 전문성이 부족한 직원이 사용하기엔 사용성이 부족하여 위협 모델링 수행에 제약이 따른다. 이를 해소하기 위해 위협 모델링 도구 관련 연구들을 분석하여 GQM접근법 기반의 사용성 평가기준을 도출하였다. 도출한 기준에 대한 전문가 설문을 진행하여 타당성과 객관성을 확보하였다. 위협 모델링 도구 3종(MS TMT, SPARTA, PyTM)의 사용성 평가를 수행하였으며, 평가 결과 MS TMT의 사용성 수준이 타 도구 대비 우세함을 확인하였다. 본 연구는 사용성 평가기준을 제시하여 보안 전문성이 부족한 직원도 효과적으로 위협 모델링을 수행할 수 있는 환경을 조성하는데 기여하는 것을 목표로 한다.

MissingFound: An Assistant System for Finding Missing Companions via Mobile Crowdsourcing

  • Liu, Weiqing;Li, Jing;Zhou, Zhiqiang;He, Jiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4766-4786
    • /
    • 2016
  • Looking for missing companions who are out of touch in public places might suffer a long and painful process. With the help of mobile crowdsourcing, the missing person's location may be reported in a short time. In this paper, we propose MissingFound, an assistant system that applies mobile crowdsourcing for finding missing companions. Discovering valuable users who have chances to see the missing person is the most important task of MissingFound but also a big challenge with the requirements of saving battery and protecting users' location privacy. A customized metric is designed to measure the probability of seeing, according to users' movement traces represented by WiFi RSSI fingerprints. Since WiFi RSSI fingerprints provide no knowledge of users' physical locations, the computation of probability is too complex for practical use. By parallelizing the original sequential algorithms under MapReduce framework, the selecting process can be accomplished within a few minutes for 10 thousand users with records of several days. Experimental evaluation with 23 volunteers shows that MissingFound can select out the potential witnesses in reality and achieves a high accuracy (76.75% on average). We believe that MissingFound can help not only find missing companions, but other public services (e.g., controlling communicable diseases).