KSII Transactions on Internet and Information Systems (TIIS)
/
제9권5호
/
pp.1717-1732
/
2015
The widespread use of location-based services (LBSs), which allows untrusted service provider to collect large number of user request records, leads to serious privacy concerns. In response to these issues, a number of LBS privacy protection mechanisms (LPPMs) have been recently proposed. However, the evaluation of these LPPMs usually disregards the background knowledge that the adversary may possess about users' contextual information, which runs the risk of wrongly evaluating users' query privacy. In this paper, we address these issues by proposing a generic formal quantification framework,which comprehensively contemplate the various elements that influence the query privacy of users and explicitly states the knowledge that an adversary might have in the context of query privacy. Moreover, a way to model the adversary's attack on query privacy is proposed, which allows us to show the insufficiency of the existing query privacy metrics, e.g., k-anonymity. Thus we propose two new metrics: entropy anonymity and mutual information anonymity. Lastly, we run a set of experiments on datasets generated by network based generator of moving objects proposed by Thomas Brinkhoff. The results show the effectiveness and efficient of our framework to measure the LPPM.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3328-3349
/
2020
With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users' privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users' behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users' privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary's background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users' privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.
생활의 모든 것들이 데이터화 되어가고 있는 세상에서 데이터의 양은 기하급수적으로 증가하고 있다. 이러한 데이터는 수집 및 분석을 통하여 새로운 데이터로 가공되어진다. 새로운 데이터는 병원, 금융, 기업 등 여러 분야에서 다양한 용도로 사용되고 있다. 그러나 기존의 데이터에는 개인들의 민감한 정보가 포함되어 있기 때문에 수집 및 분석과정에서 개인의 프라이버시 노출 우려가 있다. 해결 방안으로 프라이버시 보존형 데이터 마이닝(PPDM)기술이 있다. PPDM은 프라이버시를 보존하면서 동시에 데이터로부터 유용한 정보를 추출하는 방법이다. 본 논문에서는 PPDM을 조사하고 데이터의 프라이버시와 유틸리티를 평가하기 위한 다양한 측정방법을 분석한다.
최근 스마트폰의 발전에 따라서 많은 위치 기반 서비스가 활용되고 있으며, 위치 정보 노출로 인한 문제점이 사회적 이슈로 대두되고 있다. 기존의 잘 알려진 위치 정보 보호를 위한 공간 클로킹 기법은 사용자가 요청한 지역에서 위치 정보를 흐릿하게 처리하였다. 하지만 계속적으로 움직이는 이동 객체의 모든 지역을 클로킹하기에는 범위공간이 무수히 넓어지는 문제를 가진다. 따라서, 본 논문에서는 이동 객체 정보 보호를 위한 그리드 기반 시멘틱 클로킹 기법을 제안한다. 제안 기법은 시멘틱 클로킹을 위하여 EMD 갱신 스키마를 확장하고 이동 객체를 위한 대표 보호지역의 클로킹을 정의하였다. 성능 평가에서는 제안 기법이 기존 기법에 비해 처리 시간과 공간 범위에서 안전성과 효율성을 높였다. 이를 통해, 성공적으로 다양한 적으로부터 지속적으로 움직이는 객체의 위치 개인 정보를 보호하여 기존의 방법을 능가하는 성능을 보인다.
The purpose of this paper is to propose a securely personalized context-aware cooperative query that supports a multi-level data abstraction hierarchy and conceptual distance metric among data values, while considering privacy concerns around user context awareness. The conceptual distance expresses a semantic similarity among data values with a quantitative measure, and thus the conceptual distance enables query results to be ranked. To show the feasibility of the methodology proposed in this paper we have implemented a prototype system in the area of site search in a large-scale shopping mall.
Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.
본 연구에서는 최근 사회적 이슈로 등장하고, 빈번하게 대형 사고가 발생하는 개인정보 보안 사고에 대하여 사전에 탐지하여 예방할 수 있는 개인정보보호를 위한 리스크 모니터링 모델을 제시한다. 이를 위하여 개인정보 및 개인정보보호 업무를 정의하고, 개인정보 생명주기에 따른 리스크를 식별한다. 식별된 리스크는 전문가 설문을 통하여 우선관리대상 리스크를 선정하고, Fishbone Diagram을 활용하여 리스크 요인을 도출한다. 리스크 요인들은 지표로서 각 측정 단위와 임계치를 보유하며, 개인정보보호 업무와 리스크에 따라 지표의 값을 가지고 판단하는 경고맵을 개발한다.
Federated learning (FL) is a ground breaking machine learning paradigm that allow smultiple participants to collaboratively train models in a cloud environment, all while maintaining the privacy of their raw data. This approach is in valuable in applications involving sensitive or geographically distributed data. However, one of the challenges in FL is dealing with heterogeneous and non-independent and identically distributed (non-IID) data across participants, which can result in suboptimal model performance compared to traditionalmachine learning methods. To tackle this, we introduce FedGCD, a novel FL algorithm that employs Graph Neural Network (GNN)-based community detection to enhance model convergence in federated settings. In our experiments, FedGCD consistently outperformed existing FL algorithms in various scenarios: for instance, in a non-IID environment, it achieved an accuracy of 0.9113, a precision of 0.8798,and an F1-Score of 0.8972. In a semi-IID setting, it demonstrated the highest accuracy at 0.9315 and an impressive F1-Score of 0.9312. We also introduce a new metric, nonIIDness, to quantitatively measure the degree of data heterogeneity. Our results indicate that FedGCD not only addresses the challenges of data heterogeneity and non-IIDness but also sets new benchmarks for FL algorithms. The community detection approach adopted in FedGCD has broader implications, suggesting that it could be adapted for other distributed machine learning scenarios, thereby improving model performance and convergence across a range of applications.
대내외 환경이 급격하게 변화함에 따라, 기업이 직면하는 보안 위협에 대한 보호대책 구현의 중요성이 점차 증대되고 있다. 이러한 상황에서 설계 초기 단계부터 보안을 접목하는 SbD(Security by Design, 보안내재화) 접근법의 필요성이 부각되고 있으며, 위협 모델링은 SbD의 핵심적인 도구로 인식되고 있다. 특히, 비용과 시간을 절약하기 위해 보안 문제를 조기에 발견하고 해결하는 Shift Left 전략의 적용을 위해서는 소프트웨어 개발자와 같은 보안 전문성이 부족한 직원의 위협 모델링 수행이 요구된다. 다양한 자동화된 위협 모델링 도구들이 출시되고 있으나, 보안 전문성이 부족한 직원이 사용하기엔 사용성이 부족하여 위협 모델링 수행에 제약이 따른다. 이를 해소하기 위해 위협 모델링 도구 관련 연구들을 분석하여 GQM접근법 기반의 사용성 평가기준을 도출하였다. 도출한 기준에 대한 전문가 설문을 진행하여 타당성과 객관성을 확보하였다. 위협 모델링 도구 3종(MS TMT, SPARTA, PyTM)의 사용성 평가를 수행하였으며, 평가 결과 MS TMT의 사용성 수준이 타 도구 대비 우세함을 확인하였다. 본 연구는 사용성 평가기준을 제시하여 보안 전문성이 부족한 직원도 효과적으로 위협 모델링을 수행할 수 있는 환경을 조성하는데 기여하는 것을 목표로 한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권10호
/
pp.4766-4786
/
2016
Looking for missing companions who are out of touch in public places might suffer a long and painful process. With the help of mobile crowdsourcing, the missing person's location may be reported in a short time. In this paper, we propose MissingFound, an assistant system that applies mobile crowdsourcing for finding missing companions. Discovering valuable users who have chances to see the missing person is the most important task of MissingFound but also a big challenge with the requirements of saving battery and protecting users' location privacy. A customized metric is designed to measure the probability of seeing, according to users' movement traces represented by WiFi RSSI fingerprints. Since WiFi RSSI fingerprints provide no knowledge of users' physical locations, the computation of probability is too complex for practical use. By parallelizing the original sequential algorithms under MapReduce framework, the selecting process can be accomplished within a few minutes for 10 thousand users with records of several days. Experimental evaluation with 23 volunteers shows that MissingFound can select out the potential witnesses in reality and achieves a high accuracy (76.75% on average). We believe that MissingFound can help not only find missing companions, but other public services (e.g., controlling communicable diseases).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.