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Abstract 
 

The widespread use of location-based services (LBSs), which allows untrusted service 
provider to collect large number of user request records, leads to serious privacy concerns. In 
response to these issues, a number of LBS privacy protection mechanisms (LPPMs) have been 
recently proposed. However, the evaluation of these LPPMs usually disregards the 
background knowledge that the adversary may possess about users’ contextual information, 
which runs the risk of wrongly evaluating users’ query privacy. In this paper, we address these 
issues by proposing a generic formal quantification framework,which comprehensively 
contemplate the various elements that influence the query privacy of users and explicitly states 
the knowledge that an adversary might have in the context of query privacy. Moreover, a way 
to model the adversary’s attack on query privacy is proposed, which allows us to show the 
insufficiency of the existing query privacy metrics, e.g., k-anonymity. Thus we propose two 
new metrics: entropy anonymity and mutual information anonymity. Lastly, we run a set of 
experiments on datasets generated by network based generator of moving objects proposed by 
Thomas Brinkhoff. The results show the effectiveness and efficient of our framework to 
measure the LPPM. 
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1. Introduction 

In recent years, the growing popularity of smart mobile devices equipped with Global 
Positioning System (GPS) chips, in combination with the increasing availability of wireless 
data connection, has fostered the development of a variety of successful location-based 
services (LBSs). Some LBS examples [1] include GPS navigation(e.g., TomTom), mapping 
applications(e.g., Google Maps), Points of Interest retrieval (e.g., AroundMe), coupon 
providers(e.g., GroupOn),  and location-aware social networks (e.g., Foursquare).  

In spite of the enormous benefits brought to individuals and society, LBSs raise a serious 
privacy concerns as exposure of users’ location contained in the LBS queries has been shown 
to make users susceptible to a broad set of location-based inference attacks, allowing the 
untrusted/unknown LBS service provider (LSP) to learn private users’ information such as 
their home and work addresses, life styles, political/religious associations, and health 
conditions. For example, from the anonymous GPS data of individuals it is possible to infer his 
points of interest (i.e., his home location and work address) [2-4], to predict his past, current 
and future locations [5-6], and or even  to infer his society relationships [7]. 

In the literature, two major privacy concerns in LBSs have been studied – location privacy 
and query privacy [8] in terms of the types of sensitive information. The former refers to users’ 
private information directly related to their location containing in a LBS query, as well as the 
other private information that can be inferred from the location [9]. For example, a user issuing 
a LBS query in the hospital premise would enable the adversary correlate medical condition to 
the user. Query privacy, the focus of our paper, refers to users’ private information related to 
LBS query attributes [9]. For instance, the frequent queries for nearest betting office may 
disclose the user’ gambing habits to the adversary. That is, location privacy means hiding the 
user’s location while query privacy means preventing the mapping of a LBS query to a user. 
The basic idea to protection users’ query privacy in LBS is to break the link between user 
identities and LBS queries [10]. Intuitively, one way to implement this is to anonymize queries 
by removing or replacing users’ identities with pseudonyms. However, this has been proved 
insufficient, since the adversary can usually find publicly available contextual information 
(e.g.,white pages) to link the user’s identity with her (home) location, and thereby compromise 
the user’s query privacy. In this case, the user’s location information can serve as 
quasi-identifiers. To address the challenge, many research efforts have recently been dedicated 
to develop LBS Privacy Protection Mechanisms (LPPMs) that allow users to make use of the 
LBSs while limiting the amount of disclosed sensitive information [8, 11-15]. Most of them 
are based on intelligently perturbing the information submitted to the LSP, in order to increase 
the uncertainty of the adversary about user’s true location. More specifically, they employ a 
k-anonymity based framework to blur user exact locations into cloaking regions (CR) so that a 
certain number of users (at least k) share the same quasi-identifier with the real issuer. 
Therefore, it is difficult for the untrusted LSP to deduce who is the issuer of the query among 
the k potential issuers. The caculation of the regions is termed as cloaking or generalisation. 
As depicted in Fig. 1, with this framework, a user issues her location to LSP via a trusted thirty 
part (TTP) which subsequently strips off the identifier, generates a k-anonymity CR that 
covers not only query issuer but also k-1 other users geographically. The LSP replies to this 
CR request and routes the answer through the TTP to be redirected to the specific user with a 
refined result when possible. 
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Fig. 1. The trusted thirty server architecture 

 
However, the evaluation of these LPPMs usually neglects that the adversary might have 

some knowledge about contextual information and also about the algorithm implemented by 
LPPM. Such information can help the adversary reduce uncertainty on user’s true location 
[16]. Hence, the prior evaluation that disregards such information overestimates the level of 
privacy protection offered by the LPPM. For example, location k-anonymity is insufficent to 
measure query privacy when taking into account users’ profiles [17]. Nowadays, the 
popularity of social networks and the growing exposure of peoples’ information on Internet 
provide adversaries source to gather enough background knowledge to obtain the more 
contextual information [18]. Thus, new privacy risks will emerge. For example, 
“center-of-ASR” and “outlier” attacks are found on some existing cloaking algorithm when 
their implementation is made public [19]. Hence, it is a new challenge to quantify the LBS 
query privacy when the adversary has the knowledge about contexutal information. 
Furthermore, in current LBS privacy research activities, most efforts focus on developing 
LPPMs. On the contrary, the methods that evaluate the trustworthiness of the LBSs system, 
gauge the LBS privacy level of the users, and measure the effectiveness of given LPPM are 
immature and underdeveloped. Obviously, the lack of a unified and generic formal framework 
for specifying and evaluating LPPMs is evident, and a good model for the knowledge of the 
adversary and his possible reasonable ability is also missing. This can lead to a wrong 
estimation of the query privacy of user. 

In this paper, we propose a privacy quantifying framework for modeling and evaluating 
LBS query privacy regarding the knowledge of contextual information available to the 
adversary. One of the main ideas of the framework is to explicitly define the assumptions on 
the knowledge as well as on his reasoning ability. The other elements that influence the user’s 
query privacy, i.e., user’s spatiotemporal position, privacy requirements and the LPPMs, are 
comprehensively studied, especially while various LBSs are being used. Leveraging on this 
framework, we correctly evaluate the effectiveness of the LPPMs with respect to the 
knowledge about contextual information, helping user select the appropriate privacy 
requirements to determine the right tradeoff between privacy and service quality. 

2. Related Work 
In the LBS privacy protection community, query privacy is the ability to prevent other parties 
to learn the issuers of queries. So, protection of users’ query privacy is essentially to prevent 
the adversary to learn their issued queries. Tecniques proposed to protect query privacy can be 
classified into dummy query [14, 20], location cloaking [11-13], and cryptographic 
transformation [21]. The dummy query methods hide dummy queries among a set of different 
queries such that the real queries are hidden in the ones. The location cloaking methods exploit 
the concept of k-anonymity to hide the real issuer in a number of users such that s/he is 
indistinguishable from the others from the view of the adversary. In the cryptographic 
transformation methods, users’ queries are encrypted and remain secret for LSP so as to offer 
strong privacy protection. All of these methods introduce extra processing overhead. In this 
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paper we focus on location cloaking and use it to protect query privay with respect to 
contextual informaiton. With the aim of assessing the effectiveness of cloaking techiniques, 
location k-anonymity has been investigated deeply and was first introduced by Gruteser and 
Grunwald [8] by extending the concept of k-anonymity in database privacy [22]. This metric 
refers to the situation in which the location precision contained in an LBS query is decreased to 
a much large area where the query issuer is indistiguishable from at least k-1 other users also 
present in that area. Because of its simplicity, location k-anonymity has been widely adopted 
in many different LPPMs, including  IntervalCloaking [8], CliqueCloak [11], Casper [23], 
hilbASR [19], incremental clique-based cloak [13] and dichotomicPoints [17]. However, 
deeper understanding of k-anonymity reveals its drawbacks. Lin et al. [24] indicate that the 
k-anonymity is not sufficient enough to reflect the true anonymity when the adversary has the 
knowledge of different query probability of all users in the cloaking set. Shokri et al. [25] 
evaluate the effectiveness of k-anonymity in different scenarios in terms of adversary’s 
background information and conclude that location k-anonymity is only effective for 
protecting query privacy but not location privacy. Subsequently, Shokri et al. [26] propose a 
distortion-based privacy metric for measuring location privacy, which  considers the 
knowledge of contextual information such as user’s mobility patterns, LPPM algorithm and 
the adversary. Chen et al. [17] indicate that the effectiveness of location cloaking can be 
compromised when the adversary has access to additional contextual information (e.g., user 
profiles) which have many interpretations in the literature. Shokri et al. [16] use user’s 
mobility profile and propose a more general use of the adversary’s expected estimation error to 
quantify location privacy, taking into account the adversary’s knowledge of user mobility 
pattern, LBS access pattern, and the internal algorithm implemented by LPPM. Howerver, 
they do not consider the knowledge of user’s profiles. Personal information (e.g., gender, job, 
salary) is usually available on the Internet, i.e., online social network, and can serve as user 
profiles as well. Shin et al. [27, 28] propose k-anonymity based metrics by restricting levels of 
similarity among users in CR in terms of their profiles.   

Based on above research, we can find: (1) the existing query privacy metrics are not 
sufficent for LBS when considering the adversary’s background knowledge as well as his 
reasoning ability, and (2) most of the existing query privacy metrics are designed for specific 
LPPMs. The lack of a unified and generic formal framework for the evaluation of the LBS 
query privacy is evidence.  

In this paper, our main goal is to define a common formal framework for measuring query 
privacy in LBSs. We focus on evaluation of the query privacy with regards to an individual 
query rather than query histories. Moreover, we make use of users’ static and public personal 
information such as profession, gender, age, preference as user’s profiles. Considering the 
users’ query histories and mobile pattern is part of our future works. 

3. Quantification framework of Query privacy 
In this section, we present our framework for query privacy.  This allows us to precisely 
specify its relevant components and attacks on query privacy with the contextual information. 
In this paper, we only consider location cloaking as in LBSs users require instant response. To 
properly assess their effectiveness under the different adversary models, we comprehensively 
consider the elements that influence the query privacy of users, including their spatiotemporal 
positions, privacy and service quality requirements, LPPM, adversary model and privacy 
metrics etc. As these elements are highly interconnected, they should be studied together in a 
consistent framework. We define such a framework (as shown in Fig. 2) as a tuple of the 
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following inseparable elements: <U, Q , LPPM, Q̂ , Attacker, Metric>, where U is the set of 
mobile users who move within an area and subscribe the LBS queries whose geographical and 
contextual information is embodied in location contained in the Q, and Q represents the set of 
queries issued by the user. LBS query privacy protection mechanism, LPPM, distorts the 
query q (a member of Q) and produces the generalization query q̂ (a member of Q̂ , which is 
the set of observable queries to an adversary). Hence, when accessing the LBS, users only 
expose the output of LPPM, instead of sharing their actual queries. The Attacker is an entity 
who implements inference attacks to infer some information about Q (e.g., issuer and location 
of a given user at a given time instant) having observed q̂  and by relying on his knowledge 
about contextual information. The evaluation metric, Metric, captures the performance of the 
adversary and his success in re-identifying the expected information about queries. Note that 
inference attack of adversary is in the sense of statistics. The adversary utilizes the 
compromised contextual information (e.g., user’s profiles) to extract the priori probability 
knowledge p(qj |ui), forming the probability matrix M=(mij), where element mij = p(qj|ui) . We 
use M (qi) to denote the i-th row of M, the probability distribution over users to issue the query 
qi. The objective of adversary is to exploit probability matrix M to reconstruct posterior 
probability of each user in the CR to be issuer when query qi is observed. 
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Fig. 2. Query privacy quantifying framework 

 
In the following subsections, we present and specify all the entities and components of our 

framework and illustrate their inter-relationship. 

3.1 Mobile Users and LBS Queries 
In mobile wireless network environment, mobile users usually use their location-aware 
wireless devices to connect to LBS through the wireless infrastructure (e.g., cellular and WiFi 
networks) in a certain spatiotemporal status. As users move between locations, they leverage 
the infrastructure to submit original local-based queries to an LSP via a TTP which transforms 
original queries into the generalized ones, at some frequency. To formally define the original 
query and generalized query, we use U={u1,u2,…,uN} to denote a set of N mobile users who 
move within an area that is partitioned into M different regions L={l1,l2,…,lM}. Time is also 
considered to be discrete, and the set of time instances that can be recorded is T={1,2,3,…,T}. 
The granularity of time instances is determined by LBS. Let whereis: U×T→L to be a 
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function that gives the actual location of a user at any time instance. The user spatial 
distribution at time t can be defined as the set S(t)={(u, whereis(u,t))| u∈U }.  

Definition 1 (Original Query) Let Q be the set of queries supported by LBS, e.g., nearest 
gas station. We say that a quadruples < u, t, whereis(u,t), qc> is a original query, where u∈U is 
the identities of users, t∈T represents time stamp when the query is issued, qc∈Q is the query 
contents. The set of queries from users U at a given time T is denote by Q⊆U×T×L×Q. Note 
that an element q=<u,t,whereis(u,t),qc>of Q represents the actual status of users in the realistic 
mobile network environment. 

Definition 2  (Generalised query) Let Q be the set of queries supported by LBS, I be the 
set of all pseudonyms used by all users, P(L) is the power set of L, and then we use R⊂P(L) to 
denote the set of all possible CRs. We say that a quadruples <i,t,r,qc> is a generalised query, 
where i∈I is user’s pseudonyms and i may be null that represents the status of being 
identity-less (when a user’s identity is removed from his communication messages without 
being replaced by one of his pseudonyms), r∈R and whereis(i,t)∈r, qc∈Q. The set of 
generalized queries, corresponding to the Q, is denoted by Q̂ ⊆I×T×R×Q. Note that an 

element q̂ =<i,t,r,qc> of Q̂ represents the spatiotemporal status of users from the perspective 
of observer. 

3.2 LBS Privacy Protection Mechanisms 
Mobile users share their original queries (e.g., Q) with possibly untrusted LSP in various LBSs, 
or unwilling reveal their identities (e.g., U)  and locations (e.g., L) contained in the original 
queries to curious eavesdropping adversaries through wireless channel. In all these scenarios, 
an adversary can track or identify users over an observation period, unless their identities and 
locations are properly modified before being exposed to others. The mechanism that performs 
this modification in order to protect the users’ query privacy is referred to a LPPM. 

As mentioned above, we focus on cloaking-based LPPM in which the TTP use cloaking 
algorithm to transform an original query into a generalized query  and forwards it to the LSP. 
The main idea is to cloak the data that could be used, possibly joined with external knowledge, 
to re-identify individuals. More specifically, given an original query q=<u,t,whereis(u,t),qc>, 
the LPPM replaces the user’s identity (i.e., u) with the pseudonym (i.e., i) and substitute a 
large area (i.e., r) for user’s location (i.e., l)  to protect query privacy.  Formally, we represent 
the LPPM as a function: f : Q→ Q̂ . For instance, we have ˆ( )f q q= . The function f maps 

the original queries Q  to generalised query Q̂ , which also takes users’ privacy requirements 
as part of its input. The objective of adversary is to invert this mapping by depending on their 
knowledge: Given the subset of generalised queries, he tries to re-identify the real issuer of the 
original queries. 

3.3 The Adversary 
In the LBS system, privacy risks and countermeasures should be categorised according to the 
adversary’s model and goals [10]. For query privacy, the adversary’s goal is to associate 
issuers to their queries while the model should be defined in terms of his knowledge and 
attack(s) [28]. As the adversarial knowledge and attack(s) has directly influence on the 
difficulty of attacking this LPPM. The more knowledge to the adversary has available and the 
more his reasoning abilities the higher the probability of inferring the users’ private 
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information. Prior works [19, 25] have indicated that the effectiveness of a LPPM can only be 
formally evaluated only if the reidentify capabilities of the adversary are explicitly stated. To 
define such capabilities, we introduce the knowledge of the adversary as a contextual 
information, denoted C, of a possible attack that consists of a set of assumptions. In this paper, 
we assume that some contextual information that the adversary has access to is inherently 
contained in C. 

A.  The assumption on adversarial knowledge and abilities  
To integrate the adversarial knowledge and reasoning capabilities in the quantification of 

query privacy, we need to know how much or what knowledge is available to adversary. In 
reality, this might not be infeasible. Consequently, it is common to make some assumptions on 
adversarial knowledge and capabilities. We assume an adversary: (1) intercepts all generalised 
queries forwarded by TTP. This assumption implies that either the LSP is untrusted or the 
communication channel between the TTP and the LSP is not secure; (2) knows the LPPM used 
by TTP (i.e., f). This assumption is common in the literature since data security techiques are 
typically public; (3) knows all users’ current spatial distribution (i.e., S(t)). This assumption is 
conservative but possible.  In real scenarios, users may often issue LBS query from the same 
positions (home, office). Referring to the address books or other public information, the real 
issuer can be identified through physical observation, triangulation, etc. In the worst case, an 
adversary may be able to obtain the positions of all users in the anonymity set of the query. 
This represents a very strong adversary which allow us to analyse query privacy in the worst 
case. The availability of S(t) make the adversary to obtain the set of users presented in any 
region r  at tim t , which is denoted as ASC(r,t); On the other hand, because in practice the 
adversary does not have all users’ locations, it is important that the cloaking algorithm does 
not reveal the position of any user, to avoid giving away additional information. (4) has no 
knowledge about the decision process of users’ privacy requirements. However, an adversary 
can learn the users’ privacy requirements after observing the generalised queries. This is 
realistic. As from the features of generalised queries, the adversary can infer the corresponding 
privacy requirements; (5) cannot link any two queries from the same user. All queries are 
independent from the adversary’s perspective; (6) exploit users’ profiles to obtain the prior 
knowledge over users regarding the issuing queries.  

Once the contextual assumptions are defined, we can formalize how the adversary can try to 
infer, from a generalized query, the real issuer that issued it. Given a generalised query q̂  and 
C, we model this attack as the likelihood of associating a specific identity to a generalized 
query q̂  from the view of the adversary with C. For any user u∈U, the corresponding 
probability distribution can be respented as p(I=u| q̂ ,C), where I is the issuer of  q̂ . We refer to 
this as a posterior probability of user u, which can be computed as follows: 

 

'

'

' '

' '

ˆ ˆ( , , ) ( ) ( | ) ( | , )ˆ( | , )
ˆ ˆ( , ) ( ) ( | ) ( | , )

ˆ( | ) ( | , )                                           =
ˆ( | ) ( | , )

u

u

p u q C p C p u C p q u Cp I u q C
p q C p C p u C p q u C

p u C p q u C
p u C p q u C

⋅ ⋅
= = =

⋅ ⋅

⋅
⋅

∑

∑

  

 

In the above equation, the distribution p(u|C) represents the probability that user u issue a 
query at time t based on the contextual informaiton C. Since there has no information about the 
distribution available, we can assume it as uniform according to the principle of maximun 
entropy [29]. For 'u u∀ ∈ , this leads to '( | ) ( | )p q C p u C= . Thus, the posterior distribution 
can be simplified as: 
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The probability ˆ( | , )p q u C  indicates the likelihood that if user u generates a original query 
q at time t then the q  will be generalized as ˆ.q  This is actually a joint of the following two 
probabilities: 1) the probability that user u issues the original query q  when he submit a query 
at time t. We call this probability the a priori probability of user u; 2) the probability that the 
LPPM takes as input  q  and outputs ˆ.q  We use p(q|u,C) and p(f(q)= q̂ ) to denote these two 
probabilities, respectively. Thus, we have 

 

                        ˆ ˆ( | , ) ( | , ) ( ( ) )p q u C p q u C p f q q= ⋅ =                                                   (2) 
 

We assume that the LPPM mentioned in this paper are deterministic. That is, there is 
always a unique generalized query corresponding to each original query. This implies that the 
p(f(q)= q̂ ) is either 0 or 1. Given an original query and a generalised query, this value is 
availabe to the adversary because LPPMs are public. Therefore, the key of query privacy 
analysis is to compute p(q|u,C) for any query q∈Q.   

The calculation of p(q|u,C) depends on C, i.e., the available contextual information. In this 
paper, we only consider the adversary’s knowledge about static contextual information, i.e., 
users’ profiles. In other words, the contextual information does not change over time. Note 
that in practice we can also consider it as static if a type of contextual information keep stable 
for a sufficiently long period. For example, a user’s profiles can be considered as static even 
though the user may change his job as changing jobs is not frequent. In the following 
discussion, we give the method of computing a priori knowledge based on contextual 
information C. 

B.  The derivation of the adversarial knowledge based on user’s profiles 
User profiles are associated with a set of attributes that characterize the user. These 

attributes may contain the description information (e.g., age, job, gender, nationality), contact 
information (e.g., zip codes, name, address, e-mail) and personal preferences (e.g., hobbies, 
favourite activities, moving pattern) [27]. The values of these attributes can be categorical 
(e.g., nationality) or numerical (e.g., salary, age), and can be discretized into a categorical or 
interval form. For example, the value of a home address can be represented by the 
corresponding zone in which it lies while the numerical values of age can be discretised into 
three intervals, such as ‘≤20’, ‘≥20,≤40’, ‘≥40’. Note that the intervals are mutually exclusive 
and their union is equal to the original domain. In this way, each attribute has a finite number 
of candidate values. 

Let A={a1,a2,…,an} be the list of the attributes where ai is the name of the attribute. Each 
attribute has its certain domain. The profiles of user u can be represented as uϕ ={ a1: val1, a2: 

val2,…, an: valn}, where vali is the corresponding value of attribute ai, denoted by ia
uϕ . 

Because not all the attributes are applicable to all users, some of them may be empty for 
certain users. Thus the contextual information learnt by the adversary can be represented as the 
following: 

{ ( ), ,{ | }}uC S t f u Uϕ= ∈ . 
 

Our main idea of calculating the p(q|u,C) is to compute the relevance of user u’s profile to 
each query and compare the relevance to q with those to other queries. Given a profile attribute 
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ai, we can discretize its domain into intervals if it is numberical or divide the domain into 
sub-categories if it is categorical. After being discretized, each profile attribute can be denoted 
by binary digits. We simply use the bits as much as the number of all the possible discrete 
values for ai. With this binary string of bits, we can denote the profiles of user u as a vector 

ia
uP =[l1,l2,…,ln], where li is sequence of binary digits of discrete values of ai. The length of li is 

equal to the number of all possible discrete values of ai, and the digital is 1 if vali satisfies the 
corresponding discrete value and 0 otherwise. For instance, since all the possible values of a 
profile attribute ‘gender’ are  “female” and “male”, we utilize the two bits M│ F to represent 
the gender: “female” can be indicated with ‘01’and “male” can be indicated with ‘10’. 
Moreover, the numerical attribute ‘age’ can be discretized into the form of  
≤20│ ≥20,≤40│ ≥40.  Thus, the age 25 can be represented as ‘010’. 

Each query q∈Q should have a set of correlated attributes that can be used to deduce the 
real issuer of this query q. Furthermore, for a given related profile attribute, its value has 
different contribution to identify the real issuer. Therefore, each value of a relevant attribute 
has a different weight to measure the probability that the user issues the given query q. For 
instance, for the query asking for expensive luxury, the associated attributes should include 
job, salary and age while nationality is irrelevant. Among them, a salary is much more relevant 
than age and moreover, a salary of more than 10 000 dollar is much more important than one of 
less than 1000 dollar. Hence, we use a relevant vector ia

qW  for each attribute ai to express the 

relation between values of attributes and queries. Let ia
qW =[w1,w2,…,wn] be the relevance 

vector of query q of attribute ai. For any u∈U and q∈Q, let ( ), iaai
q ui n

u q wµ
≤

= ⋅∑ P  be the 
relevance value of user u’s profile to query q. Consequently, the probability of user u issuing 
the query q based on contextual information C is:  

 

'
'

( , )( | , )
( , )

q Q

u qp q u C
u q

µ
µ

∈

=
∑

                                                    (3) 

3.4 Privacy metrics 
In the literature, a large number of coaking-based LPPMs have been proposed to protect query 
privacy by departing the association between users’ identities and their queries. The objective 
of the adversary is to try to invert these LPPMs, depending on his observed generalized query 
and contextual informaion C. The performance of the adversary and his success in recovering 
the desired information about q̂  captures the level of the query privacy offered by these 
LPPMs. Therefore, the performance of the adversary need to be quantified precisely in order 
to improve the performance of LPPMs. Furthermore, LBS users need the measurement to 
express their privacy requirements for their queries.  

Beside location k-anonymity, numerous privacy metrics have been proposed for 
quantifying the capability of the adversary, such as feeling-based [30], expected estimation 
error-based [25, 31]. The feeling-based metric employs location entropy to quantify the 
average uncertainty of the adversary to guess the issuer in a given scenario. The estimation 
error-based metrics quantify privacy as the probability of the adversary choosing the real 
issuer when he makes a single guess. The probabilistic nature of the adversary’s task implies 
that he, in most of the cases, cannot be completely sure of the issuer. Uncertainty is thus 
inevitable. We use a posterior probability distribution to capture the adversary’s certainty and 
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quantify the expected correctness of his attack. In this section, we present three metrics on 
query privacy and formally define them using our framework. 

Definition 3 (location k-anonymity) Let q=<u,t,whereis(u,t),qc>∈Q to be the original 
query, q̂ =<i,r,t,qc>∈Q̂  be the corresponding generalized query. The issuer u is k-anonymity if 
|{u∈U|whereis(u,t) ∈r^f(q)= q̂ }|≥k. 

The definition 3 shows that all users in the anonymity set are all k-anonymity as they take r 
as the generalised region for the query q̂  at time t. Location k-anonymity quantify privacy as 
the ability of the adversary to differentiate the real issuer from the other k-1 users within the 
anonymity set ASC(r,t). 

However, as discussed in the section 2, location k-anonymity is not sufficient for 
measuring users’ query privacy when users’ profiles are regarded as the part of the adversary’s 
knowledge. Particularly, the user whose posterior probability is higher than others is easy to be 
selected as the issuer candidate.  

In this paper, the attacker’s objective is to explore the observed query q̂  and the 
knowledge about user’s contextual information C to infer the real issuer who is in the 
anonymity set ASC(r,t). The higher the uncertainty of the user’s identity associated with the 
query is, the harder the adversary infers the real issuer. Location entropy is a widely used 
metric for measuring the uncertainty associated with location information in LBS queries. 
Thus, location entropy can also be used to describe the adversary’s certainty to identify the 
issuer of a generalized query in our context. The higher the entropy is, the lower the 
adversary’s certainty is. Let variable I denotes the issuer of a generalized query q̂ . Then the 
adversary’s certainty can be expressed as equation (4):  

 

                                  
( , )

ˆ ˆ ˆ( | , ) ( | , ) log ( | , )
Cu AS r t

E I q C p u q C p u q C
∈

= − ⋅∑                                    (4) 
 

From the perspective of the adversary, users located in the generalized region r have the 
same possibilities to issue their queries when the adversary has no knowledge about users’ 
contextual C. At this point, the entropy is maximum. So the adversary’s certainty is minimum. 
In contrast, certain users located in the region r are more likely to be taken as the candidates for 
the issuer from the adversary’s view than others also in this region if the adversary gains more 
knowledge about certain users’ contextual information. Thus the entropy will be minimum.  

For a given generalized query q̂  and a given β  values, we say that the issuer is β  entropy 
anonymity if all users in anonymity set ASC(r,t) can have r as their generalized regions when 
issuing the same query, and the entropy ˆ( | , )E I q C ≥β . 

Definition 4 (β  entropy anonymity) Let β>0, q=<u,t,whereis(u,t),qc>∈Q is the original 
query, q̂ =<i,r,t,qc>∈ Q̂  is the corresponding generalized query. The user u is β  entropy 
anonymity if   

E(I| q̂ ,C)≥β^f(q)= q̂  
 

With this metric, users can specify appropriate entropy values to express their privacy 
requirements. The users’ privacy requirements consist of a metric and its corresponding value, 
such as (β  entropy anonymity, 2.8). 

For a given LPPM, the amount of the knowledge about contextual information gained by 
the adversary has directly influence on the difficulty of attacking this LPPM. The more 
information gains the adversary obtains, the higher the probability of identification of real 
issuer is. Mutual information is a useful tool in information theory, which quantifies the 
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mutual dependence of two random variables. Thus we can use mutual information to evaluate 
the certainty increased after revealing the generalized query. Before the adversary 
compromises the generalized query, he only knows the u’s priori probabilit ( | , )p q u C . Thus, 
the certainty of the attacker can be described as ( | , )E Q u C . After the adversary compromise a 
generalized query q̂ , his certainty can be expressed as E(I| q̂ ,C). Therefore, for a given query q, 
the amount of information certainty gained by the adversary after observing the corresponding 
generalized query q̂  can be expressed as equation (5): 

 

                         

( , )

ˆ ˆ( | ; ) ( | , ) ( | , )
( | , ) log ( | , )

ˆ ˆ( | , ) log ( | , )
C

q Q

u AS r t

M I q q E Q u C E I q C
p q u C p q u C

p u q C p u q C
∈

∈

= −

= − ⋅

+ ⋅

∑
∑

                                              (5) 

 

The value of  ˆ( | ; )M I q q  reflects the changes of certainty to the adversary. The greater the 
ˆ( | ; )M I q q  is, the lower the adversary’s certainty is, and vice versa. 

For a given generalized query q̂  and a given value δ , we say that the issuer u is δ mutual 
information anonymity if all users in anonymity set ASC(r,t) get the same generalized area r 
when issuing query q and ˆ( | ; )M I q q ≤ δ . 

Definition 5 (δ mutual information anonymity) Let δ>0, q=<u,t,whereis(u,t),qc>∈Q is 
an original query, q̂ =<i,r,t,qc>∈ Q̂ is the corresponding generalized query. The issuer u is δ 
mutual information anonymity if ( , )Cu AS r t∀ ∈ satisfy 

 

ˆ( | ; )M I q q ≤ δ^f(q)= q̂ .   
 

With this metric, users can specify the appropriate value of  mutual information to express 
their privacy requirements, such as (δ  mutual information anonymously, 4.0). 

4. Experiment analysis 

In this section, we use our framework to measure the effectiveness of the query privacy 
protection algorithms “DichotomicPoints” [17] which consider the adversary’s knowledge 
and ability and can defense against the "outliers" attack. The cloaking algorithm 
DichotomicPoints takes as input the original query q, user’s privacy requirements (location 
k-anonymity, β  entropy anonymity, δ  mutual information anonymity and their corresponding 
values), the user’s real-time spatial distribution S(t) and prior probability matrix M. the output 
is the generalized area r which satisfies the user’s privacy requirement.  

To generate the coordinates of mobile users and their LBS queries, we use a network based 
generator of moving objects proposed and implemented by Brinkhoff [32]. We randomly 
generate 10 000 mobile users and simulate their movement on the real road map of Oldenburg 
(region area of 23.57km × 26.92km), a city in Germany. For the moving speeds, we use the 
default setting in the generator, which changes users’ speeds at each intersection based on the 
road type. Fig. 3 shows the global view of map of Oldenburg with footprints of mobile users. 

The adversary’s knowledge about users’ profiles can be obtained by using Adult dataset in 
UCI machine learning and methods proposed in section 3.3. As we focus on assessing our 
framework, we randomly generate users’ priori probability in the experiments. We 
implemented the algorithm DichotomicPoints using Java and the simulation experiments are 
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run on a Win7 PC with 3.51 GHz Intel Core (TM) i5 processor and 4GB memory. The results 
are obtained by taking the average of 100 times simulation of the corresponding algorithms. 
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Fig. 3. Oldenburg datasets                             Fig. 4. Location k-anonymity metric 

 
A. k-anonymity metric 
We evalute the effectiveness of our framework by checking if it can increase the likelihood 

of the adversary to correctly identify real issuers of generalze query by obtaining contextual 
information. Given a generalised query, we can use the issuer’s posterior probability as the 
measurement of the correctness of the adversary’s attack on query privacy [16]. If the 
contextual information can assist in compromising user’s query privacy, then issuer will have 
larger posterior probability than those computed without the information on average. In Fig. 4, 
we show how the average a posteriori probability of the issuer changes with   k regarding that 
the adversary has the knowledge about user’s profiles or not. Without the knowledge about 
user’s profiles, the adversary only knows that all the users in the generalized area r have the 
same possibility to issue the generalised query. In other words, the adversary can only infer 
that the probability of each user issuing query q̂  is the reciprocal of the number of users in 
anonymity set ASC(r,t) (corresponding to the curve of “without knowledge”). With the 
knowledge about users’ profiles, the attacker knows that the probability of each user issuing 
query is not the same and would select the user whose posterior probability is the largest as the 
real issuer of q̂ (corresponding to the curve of “with knowledge”). 

In Fig. 4, we observe that the user’s posterior probability decreases as k increases. This is 
because large k means more users are in the generalized region r. Give a k, the issuer’s 
posterior probability is normally less than 1/k if the adversary has no knowledge about users’ 
profiles. That is to say, the adversary cannot identify the real issuer of query with the 
probability larger than 1/k. The size of k can correctly reflect the privacy level of user. On the 
contrary, when there have more contextual information (e.g., user’s profiles) available to the 
adversary, the issuer’s posterior probability is normally large than 1/k. That is, the adversary 
can confidently identify the real issuer if the probablity is sigificantly high for the real issuer. 
Thus the k-anonymity metric is not sufficent for measuring users’ query privacy. 

From the above dicussion, we can conclude that our framework is useful to increase the 
likelihood of adversary to correctly identify the real issuer. Consequently, it is necessary to 
integrate the adversary’s background knowledge and ability in the privacy qualification. In 
addition, the results of privacy evaluation should include the query privacy level of user and 
the assumptions on knowledge available to the adversary.  
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B. β  entropy anonymity and δ mutual information anonymity metrics 
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Fig. 5. β entropy anonymity                            Fig. 6. Area of β entropy anonymity regions 

 

             
Fig. 7. δ mutual information anonymity            Fig. 8. Area of mutual information anonymity regions 
 

In Fig. 5 and Fig. 7, we show that the entropies and mutual information corresponding to 
the generalised regions generated by the dichotomicPoints algorithm satisfy the definitions of 
β  entropy anonymity and δ mutual information anonymity. We can observe that the values of 
entropy (resp. mutual information) change sharply when β  (resp. δ) is getting close to integers. 
This is due to the nature of entropy.  Fig. 6 and Fig. 8 show that the average area of generalised 
regions changes along with β  and δ  respectively.  In Fig. 6, the average area usually increases 
as β  increases. This is because the larger the β  is, the greater the entropy over users in the 
generalized region is and the more users the generalized region contains. Therefore, the 
privacy level of the user in the generalized region is higher, but the service quality is lower. 
Similarly, in Fig. 8, the area decrease as δ  increases. This is because the larger the δ , the less 
the attacker’s uncertainty is and the less users the generalized region contains. Therefore, the 
privacy level of the user in the generalized region is lower, but the service quality is higher. 

 From the above dicussion, we can see that the β  entropy anonymity metric and δ mutual 
information privacy can correctly reflect the privacy level of user provided by the LPPM with 
respect to the knowledge available to the adverary and can help user determine the tradeoff 
between the privacy requirements and service quality requirements. 

5. Conclusion 
This paper presents a formal framework for specifying LBS query privacy exploring 
contextual information. The framework is to comprehensively take the various elements and 
relations together that influence the query privacy of users into account and to formally define 
assumption on the knowledge and ability available to the adversary. Moreover, one way to 
model the adversary’s attack on query privacy is proposed in the framework. The privacy 
metrics are also described in the framework. Experiment results demonstrate the effectiveness 
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of our framework to evaluate query privacy. Simultaneously, it also shows that it is necessary 
to contemplate the attacker’s knowledge and ability in the measurement of LPPMs. 
Furthermore, it is need to consistently model users’ requirements together with the adversary’s 
knowledge and objective for designing a new query privacy protection mechanism.  

As a follow-up to this work, we will incorporate the location-based applications into the 
framework and analyse the effectiveness of query privacy protection mechanisms with respect 
to these applications.  Furthermore, we will focus on the model of users’ mobility patterns and 
query history in the framework. 
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