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Abstract 
 

Looking for missing companions who are out of touch in public places might suffer a long and 
painful process. With the help of mobile crowdsourcing, the missing person’s location may be 
reported in a short time. In this paper, we propose MissingFound, an assistant system that 
applies mobile crowdsourcing for finding missing companions. Discovering valuable users 
who have chances to see the missing person is the most important task of MissingFound but 
also a big challenge with the requirements of saving battery and protecting users’ location 
privacy. A customized metric is designed to measure the probability of seeing, according to 
users’ movement traces represented by WiFi RSSI fingerprints. Since WiFi RSSI fingerprints 
provide no knowledge of users’ physical locations, the computation of probability is too 
complex for practical use. By parallelizing the original sequential algorithms under 
MapReduce framework, the selecting process can be accomplished within a few minutes for 
10 thousand users with records of several days. Experimental evaluation with 23 volunteers 
shows that MissingFound can select out the potential witnesses in reality and achieves a high 
accuracy (76.75% on average). We believe that MissingFound can help not only find missing 
companions, but other public services (e.g., controlling communicable diseases). 
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1. Introduction 

People commonly get separated in crowded public places and lose touch with their 
companions, especially vulnerable people such as young children and forgetful old people. For 
instance, there were reports that 72 children were found missing in a zoo during 5 days [1]. By 
broadcasting announcements, reviewing surveillance video or asking passers-by, the missing 
people are likely to be found, but the process costs hours or even days. Shortening the finding 
process can largely reduce the risk to missing vulnerable people, and alleviate the anxiety to be 
suffered. As the missing people are usually out of touch (e.g., their mobile phones are out of 
battery), crowdsourcing may help shorten the finding process. By asking mobile users, the 
location of the missing person might be reported in a short period of time. The system 
AMBER Alert [2] is originated in the United States and designed to instantly galvanize the 
entire community to assist in the search of abducted children. To avoid both false alarms and 
having alerts ignored as a “wolf cry”, only abductions confirmed by polices can issue 
extensive alerts via emails, SMS text messages, social network sites (e.g., Facebook), etc. The 
strict criteria for issuing alerts makes AMBER Alert and similar systems achieve significant 
effect in abduction avoidance, but also makes them not suitable for ordinary missing cases.  

In this paper, we design MissingFound, a mobile crowdsourcing system which helps find 
missing companions, in order to shorten the finding process and cover ordinary missing cases. 
However, the effect of crowdsourcing largely relies on its user base. To attract a large enough 
user base, we could integrate MissingFound with other popular mobile applications, such as 
UBER, WhatsApp, etc. More importantly, the system should be effective, user-friendly and 
widely applicable. Consequently, MissingFound should matches several principles as follows: 
1. Only a limited number of users, who have a chance to encounter the missing person, are 
selected to be asked, in order to avoid frequently disturbing users. MissingFound selects the 
most valuable users by comparing the movement traces between the asker and other users. 
2. Besides back-end servers and users’ mobile phones, the system should not involve any other 
special equipments, in order to guarantee the applicability of MissingFound. Consequently, 
we use the surrounding WiFi Received Signal Strengths Indicator (RSSI) recorded by users’ 
mobile phones to represent users’ movement traces. 
3. The energy & bandwidth consumptions on mobile phones should be little, which are the 
main overhead of MissingFound. It makes GPS-based approaches impracticable. 
4. The users’ privacy (e.g., their precise locations) should be protected, which increases the 
users’ willingness to use MissingFound. Different from traditional WiFi RSSI based 
localization techniques such as Radar [3], MissingFound does not rely on or determine the 
placement positions of WiFi Access Points (APs), in order to protect users’ privacy. 

Following these principles, MissingFound can aware the historical proximity of different 
movement traces by calculating the similarity of two WiFi RSSI fingerprints. Given a time 
period of the person missing, MissingFound figures out the potential witnesses to the missing 
companion near the asker’s movement trace. By asking them about the missing person and 
collecting their responses, MissingFound can be competent for assisting people to find their 
missing companions. 

An effective MissingFound relies on a precise estimation of the probability of seeing the 
missing person, as well as a quick process of user selection. However, several challenges are 
arised during our implementation. 
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1. The various WiFi environments and drifty signal strengths make it difficult to estimate a 
user’s probability of seeing the missing person. We cope with this challenge by designing a 
robust metric for the estimation to adapt various WiFi environments. 
2. The seeing probabilities take too long to be sequentially calculated, which makes the 
strategy difficult to be applied in practice. Therefore, we modify the original sequential 
calculation to adapt MapReduce pattern for parallel calculation, and achieve good scalability. 
3. The selection of most valuable users is essentially a nonlinear integer programming problem 
with a large solution space (the asker might pass through some crowded places), which is hard 
to seek its global optimum. A heuristic method is implemented to obtain a good enough result. 

We note that MissingFound is a simple-to-install system – it does not rely on meticulous 
calibration, special hardware, GPS localization, or any forms of fixed reference frame (such as 
a building’s floor plan). Besides back-end servers, the system just relies on a small number of 
nearby WiFi APs and users’ smart phones. As a result, MissingFound can be deployed to most 
urban areas. In the view of this advantage, we believe MissingFound can be a useful system for 
not only finding missing people, but also lost pets and personal properties. Moreover, 
MissingFound can be applied to many other public services. For instance, if there is a newly 
confirmed patient with a dangerous communicable disease (e.g., SARS, H7N9). 
MissingFound can precisely issue alerts to the people who have been appeared in close 
proximity to this patient or visited some places after this patient in the past few days, thereby 
helping control the communicable disease. 

We implement the system in a real-world environment and test its performance by 23 
volunteers carrying Android phones. By arranging the movement traces of these volunteers in 
a teaching building over one hour, we simulate a realistic scenario of the crowdsourcing 
process for finding 4 imaginary missing people. The experiment result shows that 
MissingFound is capable of selecting out the potential witnesses in reality and achieves a high 
accuracy (0.7675 on average). One additional experiment is designed to evaluate the effect of 
MissingFound when only a long time range of the missing happened can be confirmed. 
Another experiment tests the scalability of MissingFound under different scales of user base 
and back-end servers. All the results of these experiments support that MissingFound is an 
effective assistant system for finding missing people in a real-world environment. 

Our contributions can be summarized as follows. (1) We identify the feasibility of using 
mobile crowdsourcing with historical proximity sensing for many applications in public places. 
Based on our proposed method of proximity sensing, which protects users’ location privacy, 
other public services & applications can also benefit from mobile crowdsouring. (2) We 
design and implement an assistant system MissingFound for finding missing companions 
covering ordinary missing cases, without any pre-deployment efforts and special hardware. 
Historical proximity sensing model using WiFi RSSI fingerprints, combined with parallel 
algorithm under MapReduce framework are implemented to support an effective assistant 
system for finding missing people. (3) We test MissingFound on a testbed of 23 Android 
phones and further evaluate its scalability. The experiment results show the feasibility of 
MissingFound on finding the most valuable users to ask about the missing people. 

The rest of the paper is organized as follows. Section 2 presents a high level system 
overview, followed by the models and problem formulation in Section 3. The algorithm design 
is presented in Section 4, while the evaluation of these algorithms is described in Section 5. 
Section 6 further discusses some aspects of MissingFound, while Section 7 surveys the related 
work. The paper concludes with a brief summary in Section 8. 
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2. System Overview 
Fig. 1 shows the system overview of MissingFound. We then briefly describe the system 
components. The MissingFound client periodically checks the WiFi scan readings from 
user-carried mobile phones and stores the WiFi RSSI fingerprints. A WiFi RSSI fingerprint 
includes the signal strength of all detectable WiFi APs. Since these signal strengths are 
different from one location to another, a series of WiFi RSSI fingerprints collected by a user’s 
mobile phone can be used for representing this user’s movement trace. A user’s trace would be 
periodically uploaded to the back-end servers. Sorting in time sequence, the < time, user, wifi 
fingerprint > tuples for all users are stored in Hadoop Distributed File System (HDFS) on the 
back-end servers of MissingFound. 

A user is recommended to send a report to MissingFound if he/she accidentally observes a 
potential missing person (e.g., a child crying alone). The system then matches the report to 
declared missing people on its server and notices the corresponding user if the match 
successed. Meanwhile, once a user realized that his/her companion is missing, this user 
(hereinafter called the asker) can submit information about his/her missing companion and the 
possible time range of the missing happened to MissingFound. We call the segment of the 
asker’s movement trace in this time range as a target trace. By checking database, 
MissingFound lists all matchable reports of potential missing people for the asker. However, 
in most cases, there is no matchable report. In these cases, MissingFound analyzes relevant 
time-sequenced < time, user, wifi fingerprint > tuples to select k users to ask, who have the 
high probability of seeing the missing person (hereinafter called the seeing probability). 

To select the k most valuable users, users’ seeing probabilities are estimated according to 
their movement trace and the asker’s target trace. The probability follows a simple assumption: 
if a user once was appeared in close proximity to the asker’s target trace, this user might notice 
the missing person. But if a user left a place before the asker visited there, this user has no 
chance to see the missing person. Each data point (i.e., a record tuple) in the target trace 
represents the potential time and place of the missing happend. By estimating every user’s 
seeing probability to a target point (i.e., a data point in the target trace), the seeing probability 
sum of any k combination of users to this target point can be estimated. Based on these seeing 
probability sum, an optimization problem are modeled to obtain high overall seeing 
probability and balance the seeing probability among different target points. MissingFound 
gathers the responses from these users and send them to the asker and/or a police station.  
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Fig. 1. System overview: A is the companion of the missing person, B is one of the selected user to be 

asked, C is the user who found a potential missing person 
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The time spent in selecting users should be as short as possible. However, the computation 
of seeing probability is too complex and it is an iterative process, which is hard to run in 
parallel. Moreover, the optimization problem for selecting k users is a nonlinear integer 
programming problem, which is NP-hard. A realistic user base and k are too large for 
obtaining a global optimum for the optimization. In our implementation, the computation of 
users’ seeing probabilities are performed concurrently, by modifying the algorithm to suit 
MapReduce framework. A heuristic algorithm (greedy & simulated annealing), which is also 
parallelized under MapReduce framework, is designed to produce a good enough combination 
of k users within a reasonable time. Moreover, some target points indicating the same position 
are merged, in order to reduce the amount of computation. Thanks to these strategies, when an 
asker requests to find his/her companion on MissingFound, he/she only need to wait several 
minutes for the responses from system-selected potential witnesses. Continuing this process 
till the asker gets enough valuable responses, so that achieving the goal of MissingFound. 

3. Models and Problem Formulation 
As mentioned in the above section, all users’ movement traces are periodically uploaded to the 
back-end servers of MissingFound. These records are sorted in chronological order on the 
server, and there is a fixed positive integral number that represents the gap between two 
successive records for all users. Based on these collected movement traces, we construct 
necessary models and formulate the optimization problem of selecting most valuable users. 

3.1 The similarity between two records, representing the seeing probability 
when the user and the missing person at these two locations at the same time 
Users are not willing to upload their precise locations of their daily life. Our system uses the 
signal strength of all detectable WiFi APs from mobile phones to represent their location. This 
representation is able to measure the distance between two locations, but hard to reproduce the 
original locations of users without the knowledge of the placement location of WiFi APs. Our 
model do not depend on this knowledge, in order to protect users’ privacy. A movement trace 
of a user is composed of a sequence of data points. Each data point contains a timestamp and 
the strengths of all detectable WiFi APs (i.e., wifi fingerprint). Inspired by the log-distance 
path loss (LDPL) model of the propagation of radio frequency, we explore an appropriate 
definition of the similarity between two records based on their wifi fingerprints. After several 
failed attempts, we finally define the similarity as follows: 
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where Wa and Wb are the set of detectable WiFi APs in records a and b, ai and bi are the 
strength of a same WiFi AP in them. SL indicates the salient level of the missing person (i.e., 
how easily the missing person can be recognized from the crowd), where SL ∈ N. DF is a 
decay factor and UB is the upper bound of the seeing probability. They are set as 3.0 and 0.82 
respectively in our experiments. If an AP can only be detected by one of the two records, the 
strength of this AP is set as a minimum default value −96 dBm for the other record, Since the 
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definition of similarity is an empirical formula, we explain the value of SL and UB with 
experiments in Section 5, as well as their meanings. The time cost on computing the similarity 
between two records is determined by the total number of detectable WiFi APs, which is 
relatively stable. Therefore, we regard the computation complexity of this part as a constant. 

3.2 The probability of a user becoming the first witness 
We assign R to represent the list of all uploaded records, sorted in chronological order. For an 
integer i ∈ N, T(i) represents the timestamp of the ith record in the list R. For any two records 
ri, rj ∈ R, where i < j, the timestamp of record ri is smaller than rj (i.e., T(i) < T(j)). For each 
user h, his/her movement trace Xh is composed of a set of records in the list R, and we use ri ∈ 
Xh to represent that the record ri is one record in user h’s movement trace. 
    Suppose the asker c’s mobile phone were recording ri ∈ Xc when his/her companion 
separated with asker c. At the time of user h’s mobile phone collecting rj ∈ Xh, the possibility 
of the missing person still at the location (represented by ri ), can be modeled as follows: 

( ) ( ) ( ) ( );
0 otherwise,

T j T i

ij
T i T j

e
α − <

= 


     (4) 

where α ∈ (0,1] is the possibility of the missing person staying at the place for one second. As 
the similarity between ri and rj represents the seeing probability between these two locations, 
the probability of user h noticing the missing person at the time of rj can be defined as follows: 

.ij ij ijp e s= ⋅       (5) 

At some crowed public places where exist plenty users of MissingFound, an easily noticed 
missing person (e.g., a young child crying alone at the front gate of a park) has a good chance 
to be noticed and reported to MissingFound and/or a police station. In order to minimize the 
interference of users, we tend not to ask the users at these places. Consequently, we define the 
probability of user h to be the first to notice the missing person at the time of rj as follows: 
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where η ∈ (0,1) is the possibility that a user reports to MissingFound after notice a potential 
missing person. Therefore, user h’s potential contribution on finding the missing person, who 
separates with the asker at the location represented by ri, can be defined as follows: 

ˆ .
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Because the precise location where the asker and the missing person separated at is hard to 
know, the overall potential contribution of user h can be defined as follows: 

.h ih
i Q

V v
∈

= ∑       (8) 

where Q is the target trace, a subsequence of the asker’s movement trace Xc , covering the time 
duration of the separation of the asker and missing companion happened. 

As the number of one user’s records is O(N) and the length of R is O(M·N), so the 
complexity of computing a particular vih is O(M·N2), where M and N follow the definition in 
Table 1. Suppose a MissingFound client collects one record every 10 seconds and records of 
recent few days are kept in the system, the magnitude of N comes to 10,000. Since people do 
not move all the time, those successive data points with high similarity (larger than UB) can be 
merged, in order to reduce the amount of computation. In our experiment, about 90% records 
of the target trace can be merged. Consequently, the magnitude of N can be reduced to 1,000. 
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Table 1. Alphabet of Complexity Analyse 
Descriptions Magnitude Notation 

Number of records in target trace 1,000 N 
Number of users in the system 10,000 M 
Number of users to be selected 100 K 

3.3 Selecting k most valuable users from all M users 
After a person is found missing, the primary function of MissingFound is selecting users to ask 
whether they noticed the missing person. As the number of ordinary missing people may be 
huge, asking all users in the system will cause a heavy burden on them, leading to the drain of 
users. An effective strategy of selecting k most valuable users should be designed. 
   Since every point in the target trace might be the location of the missing person, simply 
choosing the top k valuable users by Equation (8) is not a wise strategy. The users selected by 
this simple strategy may have high seeing probability on a same part of the target trace, but 
none of them has the chance to encounter the missing person if he/she is at another part of the 
target trace. The objective of MissingFound is to maximize the probability that existing some 
selected users noticed the missing person, no matter where he/she is. We will further discuss 
these two strategies in Section 5. We formulate this optimization problem as follows: 
Given: 
Q, the set of data points in the target trace; 
U, the set of all available users in the system; 
vih , the potential contribution of user h ∈ U for potential missing point ri ∈ Q in Equation (7); 
l, the factor punishing that the potential contributions are crowed at a part of the target trace, 
satisfying l ∈ (0,1); 
k, the number of users preferred to be selected. 

max  ,
l

h ih
i Q h U

x v
∈ ∈

 ⋅ 
 

∑ ∑       (9) 

{ }subject to: , 0,1 , .h h
h U

x k x h U
∈

= ∈ ∀ ∈∑    (10) 

This is a non-linear integer programming problem, which is NP-hard. If every vih is calculated 
and cached, the complexity of the brute force algorithm is O(M·N2+ k

MC ·k·N2), which 
calculates the performance of all combinations and chooses the best one. 

4. Algorithm Design 
The computation of the optimization problem defined in the above section is composed of the 
calculation of all relevant vih and the selection of k users from all M users. The overall 
complexity is O(M·N2+ k

MC ·k·N2), while using non-parallel brute force algorithms. Obviously, 
it cannot support a real world system. In this section, we study these two parts respectively to 
reduce the complexity using MapReduce framework and heuristic algorithm. 

4.1 Overview of MapReduce 
MapReduce [4] is a programming model for data processing, with inherently parallel features. 
MapReduce works by breaking the processing into two phases: the map phase and the reduce 
phase. Each phase has key-value pairs as input and output, and the programmer rewrites the 
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map function as well as the reduce function to complete the job. The output from the map 
function is processed by the MapReduce framework before sent to the reduce function. This 
processing (called shuffling) groups and sorts the key-value pairs, the rules of which can also 
be specified by programmer. After doing these, the data processing can be easily executed 
concurrently under MapReduce framework. 

4.2 Parallelizing the calculation of vih 
As shown in Equation (6), the value of every vih is based on all records between ri and rj . In 
order to parallelize the calculation of vih , we store the list R in Hadoop Distributed File System 
(HDFS). Once a target trace Q comes as a request, we generate the subsequence R’ of 
sequence R which contains all the records whose timestamps are larger than the timestamp of 
the first record in the target trace Q. 

The sequence R’ is firstly separated into several parts with a fixed size. Each mapper takes 
charge of one of these parts and produces some intermediate results. The intermediate results 
calculated by all mappers are grouped by different target point ri ∈ Q. Each reducer takes 
charge of several groups of intermediate results and produce final results of corresponding vih . 
We then explain the parallel calculation of vih in detail. 

Assume R’ has been separated into g parts, and the dth part of sequence R’ start from the 
startdth data point in R’ and end with the enddth data point. We then formally define the dth 
part of sequence R’ (Sd), user h’s partial movement trace in Sd ( ( )d

hX ), the partial target trace in 
Sd (Q(d) ), and the partial target trace containing all first d parts of R’ ( ( )ˆ dQ ) as follows: 
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It is worth mentioning that the records in each Sd keep the original chronological order. 
The basic idea is splitting the calculation of ˆ ijp  in Equation (6) into g independent parts, 

and then assembling corresponding vih based on the intermediate results produced by these g 
parts. Refer to Equation (6), the probability ( )d

ib  represents that all data points in Sd do not 
report the missing person at the potential missing point ri ∈ Q. We express it as follows: 

( )( ) 1 .
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=
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Moreover, for each partial sequence Sd , we define a partial probability ( )ˆ d
ijp  for each pair (ri, 

rj ) ∈ ( )ˆ dQ × Sd as follows: 
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This ( )ˆ d
ijp  equals to ˆ ijp  in Equation (6) if ri and rj are in the same partial sequence. Suppose ri 

∈ Sf and rj ∈ Sd , where i < j, we can modify the ˆ ijp  in Equation (6) as the following: 
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1
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In addition, we let ( )ˆ d
ihv  denote the probability that user h sees the missing person at the 

potential missing point ri ∈ ( )ˆ dQ  , from partial trace ( )d
hX . We model this as follows: 
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d d
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j X
v p
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= ∑      (14) 

After that, for any target point ri ∈ Q(f) , we can modify its vih in Equation (7) as the following: 
1
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From the modified definition of vih, it is easy to notice that the ( )d
ib  is valid if and only if ri ∈

( )ˆ fQ . Moreover, the calculation of ( )d
ib  in Equation (11) and ( )ˆ d

ihv  in Equation (14) only 
involve the records in Sd. Therefore, the calculation of ( )d

ib  and ( )ˆ d
ihv  can be parallelized, 

further parallelizing the calculation of vih in Equation (15). We then describe this algorithm 
under MapReduce framework in detail.  

At the map-side (shown in Algorithm 1), each mapper takes charge of one subsequence Sd 
and calculates ( )ˆ d

ihv  for each pair (i, h) ∈ Q(d) × U and ( )d
ib for all ri ∈ ( )ˆ dQ . At the end of the 

map-side job (cleanup function), these intermediate results are emitted to corresponding 
reducer by the key-value form < (i, startd), ( ( )d

ib , { ( )ˆ d
ihv |∀h ∈ U}) > for all ri ∈ ( )ˆ dQ . Here, (i, 

startd) is a key pair where i indicates the target data point ri and startd stands for the 
subsequence in charge. It is easy to verify that the computation complexity of the map-side job 
is O(M·N2/map_num),where map_num represents the number of map tasks running in parallel. 

In the shuffle stage, all output data of mappers are partitioned and grouped by i in the key 
pair. All these variables about one particular target record ri ∈ Q are received by a single  

 
Fig. 2. An example of our parallelized calculation 
of vih 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   4775 

       
 
reducer. For each target record ri, all of its data are sorted by the startd in increasing order. The 
amount of transmitted data from one mapper to all reducer is O(M·N). As they are parallel 
transmitted in the shuffle stage, the time cost of this stage can be estimated as O(M·N/ 
reduce_num), where reduce_num is the number of reducers in this job. 

At the reduce-side (shown in Algorithm 2), each reducer takes charge of map-side output for 
some ri ∈ Q. As the records have already been sorted in the merge phase of shuffle stage, the 
elements of Equation (15) can be accumulated while reading records, which means the ( )d

ib∏  
need to be calculated only once. By assigning the calculation of the N target data points to 
reducers evenly, the reduce-side job can be accomplished in O(map_num·N/ reduce_num). 

Fig. 2 shows an example of our parallelized calculation of vih. Due to the difference of 
magnitude level, the time cost of all the vih calculation O (M·N2/map_num + M·N/reduce_num 
+ map_num·N/reduce_num) can be simplified into O(M·N2/map_num).  Therefore, we can 
expect that, by parallelizing the calculation of vih, the complexity of this part reduces from 
O(M·N2) to O(M·N2/map_num). 

4.3 Algorithm for selecting k most valuable users 
After calculating every vih , selecting k most valuable users from all M users is still a NP-hard 
problem. So we resort to heuristic algorithms. 

4.3.1 Brute Force 
In a small scale (e.g., selecting 3 users), it is possible to list all combinations. As stated in the 
complexity analysis for Function (9), the complexity of this algorithm is O(M·N2+ k

MC ·k·N2). 
However, k should be at least several dozens, which makes this method unpractical. 

4.3.2 Greedy Algorithm 
A greedy algorithm is designed for this problem. In the first iteration, we select the most 
valuable user from M candidates, by Objective Function (9) (i.e., k = 1 in constraint Equation 
(10)). In the following iterations, we select one user in each iteration, who contributes the 
largest increase of Objective Function (9), comparing with the last iteration. After k iterations, 
the selection of k users is accomplished. This algorithm is better than simply choosing top k 
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most valuable users and it runs in O(k2·M·N) time, which is acceptable to MissingFound. But 
certainly, the greedy algorithm cannot guarantee a global optimum. 

4.3.3 Simulated Annealing Algorithm 
Besides the greedy algorithm, we also make use of simulated annealing to solve this problem. 
Simulated Annealing algorithm is an effective method to solve binary knapsack problem, 
which is similar to our problem. Initially, k users are randomly selected from all M candidates 
as the solution. In each iteration, the algorithm randomly chooses one of these k selected users 
and one of the M-k unselected users to exchange. If the overall value of the new solution 
(measured by the objective function (9)) is worse than the previous solution, there is a chance 
to recover from the exchange, with a certain probability. Along with the iteration processing, 
this probability of recovery grows bigger, which finally leads to a stable solution. This solution 
might jump out of a local optimum and achieve the global optimum. By executing the 
algorithm many times, we have a good chance to achieve the global optimum. 

Algorithm 3 shows the approach. X is the set containing currently selected users. Value(X) is 
a function which returns the value of Objective Function (9) for a given solution set X. The 
parameter t (called temperature) is reduced by a positive factor φ ∈ (0,1) during the iterations, 
such that the likelihood of accepting a deteriorated solution decreases as the algorithm 
progresses. Therefore, the simulated annealing algorithm has the opportunity to escape local 
optimum and achieve the global optimum. For any given value of t, some exchange trials r 
(repetitions) are performed. r is multiplied with a positive constant ρ, when t is decreased. 

Simulated annealing is a kind of randomized local search algorithm, which was invented to 
avoid falling into the local optimum, but it still cannot guarantee the global optimum. 
Therefore, the algorithm need to be executed many times to increase the possibility of 
achieving the global optimum. As a probabilistic algorithm, its computation complexity is 
determined by the data and parameter t, r. The complexity of function Value(X) is O(k·N). By 
running the algorithm under MapReduce framework, the time cost can be reduced by 
map_num times (the algorithm runs in many mappers and one reducer merges their results). 

MissingFound compares the results produced by greedy and simulated annealing 
algorithms, and chooses the best result as the final result. In Section 5, we will test the real time 
cost for these two algorithms. 

5. Experiment and Evaluation 
In this paper, we propose an assistant system for finding missing companions via mobile 
crowdsourcing. In our approach, the estimation of the probability of seeing the missing person 
is based on the similarity of two WiFi RSSI fingerprints. Meanwhile, a short period of time 
spent in the selection of users is crucially important for shortening the finding process. 
Therefore, we mainly evaluate MissingFound on the following aspects: 

1. Does the similarity between two WiFi RSSI fingerprints fit the probability of seeing the 
missing person in reality? 

2. How well does MissingFound perform in a real-world scenario? 
3. How quickly does MissingFound select out most valuable users? 

In this section, we examine MissingFound to answer these questions respectively. 

5.1 Does the similarity between two records fit the probability of seeing the 
missing person? 
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To evaluate MissingFound, one primary work is to test and verify whether the similarity 
between two records (modeled in Equation (1)(2)(3)) has an appropriate definition. Since 
different locations have different WiFi environments, we try to design an uniform metric of 
the probability of seeing the missing person in various WiFi environments. We summarize 4 
criteria that an appropriate metric should fulfill, listed as follows: 
1. The probability of seeing the missing person has a negative correlation with the distance. 
2. With the same distance to the missing person, a user in outdoor scenarios has higher 
probability to notice the missing person, compared with indoor scenarios. 
3. If the user and the missing person are separated by an obstruction, the seeing probability 
should be lower than in a same distance but without the obstruction. 
4. The probabilities of seeing different missing people from a same distance should be 
different, since some people might hard to be noticed among the crowd. 

We choose 10 typical places in a campus to verify if the definition of the similarity fulfills 
these criteria. At each place, we slowly go through a straight line at a constant pace. By 
recording the WiFi RSSI fingerprints along each trace, we calculate the similarities from every 
data point to the very first data point in this trace. Fig. 3 shows the distance-similarity curves of 
our collected data, as well as corresponding fittings and prediction bands. We can easily 
distinguish between the curves of indoor scenarios and outdoor scenarios. The similarity A0 
calculated by Equation (1) indeed fits the first two criteria. 

In addition, we use the same method to collect data from the two sides of a wall in a building, 
in order to evaluate whether our approach fits the third criterion. As shown in Fig. 4, the 
similarity A0 is sharply decreased when switching to the other side of the wall, which can 
demonstrate the decreasing of seeing probability (the 3rd criterion). This phenomenon is also 
the reason that the indoor decay rate of similarity is much higher than outdoor scenarios. 

However, as shown in Fig. 3 and Fig. 4, the values of A0 is too large to indicate the 
probability of seeing the missing person. So the parameter SL is designed to indicate the salient 
level of the missing person. A higher SL represents that it is much more difficult to notice the 
missing person in the crowd. Calculated by Equation (2), the values can be projected into a 
reasonable range. Before that, the value of upper bound UB of similarity should be determined, 
which is used for judging whether two points represents the same location. We draw the 
time-similarity (A0) curve for one fix point to decide the value of UB, showed in Fig. 5. The 
drifting of similarities at a fixed position is small and the period of waves is 24 hours, 
reflecting the turning on and off of some WiFi APs in daily life. According to this result, the 
upper bound UB is set at 0.82 in our experiments to guarantee the diversity of similarity. 

   
 Fig. 3. Distance-similarity (A0) curves and 

corresponding fits & prediction bands under 
indoor and outdoor scenarios. 

Fig. 4. Distance-similarity (A0) curves for 
passing through a wall. 



4778                                                                Liu et al.: MissingFound: An Assistant System for Finding Missing Companions 

 
 

 
Based on the determined upper bound UB, we draw the distance-similarity curves for 

different SL values in an outdoor scene (shown in Fig. 6). We recommend to set SL ∈ [3,5], in 
order to indicate the salient level of different missing people and fulfill the 4 th criterion. In 
summary, we believe that the definition of the similarity between two data points can properly 
indicate the probability of seeing the missing person with different salient levels under both 
indoor and outdoor scenarios. 

5.2 How well does MissingFound perform in a real-world scenario? 
After evaluating the similarity model between two data points, we test and verify the 

probability model of seeing the missing person in realistic scenarios. We recruited 23 
volunteers and arranged their movement traces in the main teaching building of the campus 
over one hour, in order to simulate a real-world scenario. Each volunteer carries an Android 
phone with a MissingFound client pre-installed. These volunteers are initially distributed in 
different classrooms of the building when the experiment begins. As the experiment 
progresses, they move from one place to another along pre-arranged paths, and stay for a 
pre-determined time before next movement, according to their respective movement schedules. 
One of these volunteers plays the asker who can not find his/her companion, and this 
volunteer’s movement trace is used as the target trace in MissingFound. Fig. 7 shows a map of 
our experiment area. In this part of evaluation, we first assesses the performance of 
MissingFound when the asker knows the exact place where the missing person separated with 
the asker. After that, we explain the experiment used for testing the performance of our 
probability model while only a time range of the missing can be confirmed by the asker. 

 
Fig. 7. Map of our experiment area. 

Fig. 5. Time-similarity (A0) at a fixed position. Fig. 6. Distance-similarity with different SL. 
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5.2.1 Accurate missing place can be confirmed 

To evaluate the performance of MissingFound in this situation, we choose 4 locations from the 
asker’s movement trace to represent the places where the asker separate with his/her 4 
imaginary missing people respectively. After the experiment, we collect WiFi RSSI 
fingerprints from all 23 volunteers’ mobile phones and calculate each volunteer’s probability 
of seeing the imaginary missing people (Vh ), using Equation (8). In the calculation, a short 
time range (two minutes) of the asker’s trace was provided to stand for the accurate location 
where the asker separated with the imaginary missing person. 

Excepting the asker, all 22 volunteers are classified into three groups according to their 
movement schedules. (1) Volunteers who left the place before the asker and the imaginary 
missing person walked in. They have no chance to see the missing person. (2) Volunteers who 
left the place after the asker and the imaginary missing person walked in. They have the 
chance to notice the missing person. (3) Volunteers who never visited this place according to 
their movement schedules. They also have no chance to see the missing person. 

Fig. 8 and Fig. 9 demonstrate the results of these three groups of volunteers for one 
imaginary missing people, who is supposed to be separated with the asker in a small classroom 
(8m*10m). Obviously, selecting out the second group of volunteers is the core goal of 
MissingFound. As shown in Fig. 8, 7 of the 8 volunteers who are in the second group have 
high probability value, compared with other two groups. By checking the movement schedules, 
we found that the volunteer, who has the lowest probability in the second group (the 10th user 
in Fig. 8), left the classroom just after the asker walked in. This small value indeed indicates 
the low probability to see the missing person in reality. The volunteer with 5th largest 
probability in Fig. 8 was a member in group 3, who never visited the classroom during our 
experiment. We found that this volunteer stayed in the room next to this target classroom for 
all the second half of our experiment, which was at least twice longer than any volunteer in 
group 1 & 2 stayed in the target classroom. This volunteer has a small seeing probability from 
each of his data point, but these small probabilities are accumulated during the long time range 
and lead to an appreciable overall probability. 

The staying time ranges of all volunteers who visited this target classroom during our 
experiment are demonstrated in Fig. 9, as well as their probability of seeing the imaginary 
missing person (A5). The time range of the asker’s target trace is expressed as the space 
between two dash lines. It is easy to notice that no matter how long a volunteer stays in the 

Fig. 8. Probability (A5) histogram for each 
volunteer (sorted by value) when accurate 
losing place is confirmed. 

Fig. 9. Probability (A5) for each volunteer in 
group 1 & 2, with the time ranges that they 
stay in the target place. 
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room before the asker walked in, the seeing probability is close to zero. The above mentioned 
volunteer in group 2, who left the room just after the asker walked in, is marked in this figure. 

In this case, the potential witnesses, who have the chance to see the missing person in reality, 
can be selected out by simply choosing the top k users in Fig. 8. We design a variable Acc to 
indicate the accuracy of the result. The value of Acc for each missing person is defined as the 
quotient of the total number of volunteers in group 2 divided by the largest sequence number 
(sorted by probability in decreasing order) of all volunteers in group 2. The largest number 
here indicates the minimum number of users have to be selected out if we want to ask all 
potential witnesses. For example, the Acc equals to 8/10 = 0.8 for the missing case 
demonstrated by Fig. 8 and Fig. 9. The Acc values for other imaginary missing people in our 
experiment are 0.833, 0.846, 0.591 respectively. Therefore, the average accuracy Acc of this 
part of experiment is 0.7675. Most of the 4 imaginary missing people have a good enough Acc 
for real world system if accurate missing place can be confirmed. In our experiment, the 
missing case with a low Acc valued 0.591 testified the limitation of our model, the 
corresponding missinglocation is semi-enclosed by wood screens and adjoins to a main 
passage of the floor. We will further discuss the limitations of our work in Section 6. 

5.2.2 Only a time range of missing happened can be confirmed 
The accuracy of MissingFound is fine when the accurate missing can be provided. However, 
only a time range of the person missing can be confirmed in a realistic scenario. By asking 
different users who have high probability of seeing the missing person at different potential 
locations, the missing person may be noticed and reported no matter where he/she exact 
separated with the asker. In our approach, we design an exponent l in Objective Function (9) to 
punish the selected user combination which have high seeing probability at a same potential 
location. We now testify the effect of the exponent l in Objective Function (9). 

Fig. 10 shows the different results under different settings of l. Our task is selecting 2 
volunteers from all 22 volunteers, according to the performance of Objective Function (9). 
The time range of the asker’s target trace Q is set as 52 minutes in this experiment, almost 
covering the whole experiment. We draw the intermediate result h U h ihx v∈ ⋅∑  in Objective 
Function (9) for the selected 2 volunteers in every target point ri ∈ Q, in order to demonstrate 
the effect of different settings of l. Obviously, the exponent l in (0,1) punishes those data 
points in the target trace which have high probability. Therefore, the target points with low 
seeing probability may have a higher weight when selecting users. 

 
Fig. 10. Probability (vih) for each target point ri in different exponent l. 
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As shown in Fig. 10, both of the two volunteers selected by the non-punishment version 
optimization (i.e., l = 1.0 in Function (9)) have high seeing probability in the last period of our 
experiment. This might cause that none of them has the chance to notice the missing person if 
the missing person separated with the asker in the front part of our experiment. By setting the 
factor l as 0.5 in Function (9), the best combination of two volunteers have high seeing 
probability in both the front part and the last part of our experiment. Therefore, we believe that 
the user selection in our approach with exponent l can balance the probability of seeing for 
different segments of the target trace, which is the mean concern in this part of evaluation. 

5.3 How quickly does MissingFound select out most valuable users, even 
under a heavy workload? 
To reduce the time cost to a reasonable level, a parallel algorithm and a heuristic method are 
designed in Section 4. We evaluate the probability-computing algorithm under MapReduce 
framework and the user-selecting algorithm using greedy and simulated annealing 
respectively. 

5.3.1 Parallelization of the calculation of vih under MapReduce framework 
To evaluate the performance of our parallel algorithm, a Hadoop cluster is set up. There are 10 
blade servers, each with 2.4GHz*12 core CPU, 20G RAM, 270G hard disk. Each blade server 
installs 10 virtual machine with one core, 1G RAM and 16G hard disk. The experiments are 
executed on a 100 virtual machines cluster running Hadoop 2.6.0 [5]. All these physical 
machines are directly connected to the same fast network switch. Each machine runs at most 
one map task and one reduce task. The block size of this task is computed by the mappers 
number in demands. 

The serial computation complexity of this part is O(M·N2), and the time cost can be reduced 
to O(M·N2/map_num) by using MapReduce in theory. In Fig. 11, we use variable-controlling 
approach to test the time cost when N or M varies. After that, a figure shows several speed-up 
ratio curves in different data sizes, in order to illustrate the effect of parallelization. Fig. 11 (a) 
and (b) testify the relationship between time cost and variables, showing the unacceptable high 
time cost of the serial algorithms. The fitting curves in these two figures fit well with our 
analyzed computation complexity O(M·N2/map_num). Fig. 11 (c) illustrates the speed-up ratio 
in different situations. Due to the limitation of resources, the upper bound of map tasks is set as 
64. As shown in this figure, the effect of parallelization comes better while increasing the scale 
of input data. Moreover, the system overhead of MapReduce can not be ignored. It includes 
the transmission time of non-local data, startup time of tasks, etc. Because of this, the speed-up 
ratios nearly reach their peaks when the scale of map tasks reaches 64. When using 64 map 
tasks for the designed input scale (M = 10,000, N = 1,000), the computing of all vih can be 
completed in 1 minute in our experiment, which is a reasonable time for a real world system. 

 
Fig. 11. (a) M-Time curves for N=400. (b) N-Time curves for M=1000. (c) Speed-up Ratio curves in 

different data sizes. 
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5.3.2 Selecting k most valuable users 
There are three algorithms raised in Section 4 to solve this problem, Brute Force, Greedy and 
Simulated Annealing. It is easy to know that the Brute Force algorithm can be used to evaluate 
the performance of the other algorithms in small scale data, but can’t be used in a real world 
system. When testing these algorithms using the data set of the field experiment with 22 
volunteers and 1 asker, Greedy algorithm always returns the global optimum solutions (which 
is equal to the result produced by Brute Force), no matter what values are assigned to l and k. 
For a single execution of Simulated Annealing, the lowest percentage of returning the global 
optimum solutions is 65% in this test. Here, the values of parameters used in Simulated 
Annealing are described as follows: r = M, t = 0.6, φ = 0.6, ρ = 1.2. 

When testing MissingFound under our simulated data in a large input scale (M = 10,000, N 
= 1,000, k = 100), the time cost for Greedy and Simulated Annealing are 29s and 26s 
respectively. By using several map tasks to run Simulated Annealing concurrently and then 
selecting a best result from both Greedy and Simulated Annealing in the reduce task, a good 
enough solution can be produced in 1 minute. 

As evaluated above, we believe that MissingFound is able to select out a good enough group 
of users to the missing person in a realistic scenario, in a reasonable time. 

6. Discussion 
The evaluation of MissingFound shows that it is a sound assistant system for finding missing 
people in a realistic scenario. As a real world system, several more aspects should be 
considered by MissingFound. We briefly discuss them in this section. 

6.1 Weak Wi-Fi environment 
An effective MissingFound is based on sufficient number of WiFi APs, as well as their signal 
strengths. In our experiments, the minimum number of detectable WiFi APs is 3. For each data 
point we collected, there is at least one AP with the signal strength stronger than −86 dBm. 
MissingFound might produce a lower accuracy of results in a extreme weak WiFi environment. 
Fortunately, above limitations are fulfilled in the very majority of urban public areas. 

6.2 Indoor space separated by “soft” obstacles 
In Section 5, the result for one missing person’s location, which is separated by wood screens, 
has much lower accuracy than others, because the similarity decay of passing through “soft” 
obstacles is not sharp enough. Only through an armored concrete wall will lead an sharp 
similarity decay (Fig. 4). However, this phenomenon avoids the distraction from phone 
placement – the results are similar no matter phones are placed in pockets or held in hands. 
This phenomenon results in a loss of accuracy to MissingFound, but luckily, the places 
separated by “soft” obstacles are relatively limited. 

6.3 Bandwidth & energy consumptions 
The energy & bandwidth consumptions of MissingFound on mobile phones should be very 
little, which are the main overhead of MissingFound on users’ mobile phones. Suppose a 
MissingFound client collects one record every 10 seconds, there will be about 1 MB data 
collected on each mobile device per day. Since users are not moving all day long, those 
successive data points representing the same location (A0 > UB) can be merged. Suppose these 
records are transmitted to the back-end server with a compression ratio 10% (7% can be 
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achieved by our collected data), only 100 KB data need to be transmitted per day, which is 
affordable for a majority of users. Moreover, MissingFound client can store the sensor data for 
a period of time and upload them when a WiFi connection is available. Therefore, we believe 
that the bandwidth overhead of MissingFound is acceptable in a real world usage. 

The MissingFound client on a mobile phone consumes little energy, which is suitable for 
running all day long in background. Even so, its energy efficiency can be further optimized. 
For example, the periodically WiFi scanning takes the majority part of the energy 
consumption. When the user is not moving (detected by accelerators on smart phones), 
MissingFound can slow down even stop WiFi scanning. Once the user moves again, the 
frequency of WiFi scanning would return to normal. 

6.4 Behavior under heavy user load 
We think the advantage from MissingFound will be more significant when it attracts a large 
number of users. We argue that under such scenarios, MissingFound users will have a higher 
chance to find another user who has noticed the missing person. However, the system burden 
will increase at the same time. To handle this challenge, area tags for user’s trace may be 
helpful to keep the total number of candidates for one request in thousands. Only the users 
whose traces have the same tag or adjacent tag will be considered as a candidate. 

7. Related Work 
There are alternative strategies for MissingFound using floor plan or straight-line distance 

to estimate the probability of seeing after accurate positioning all data points, but none of them 
is practical. Because MissingFound client should be run on user’s smart phone all day long, 
any high energy-consume methods are unacceptable, such as GPS technique. Moreover, a 
system without pre-deployment effort,  knowledge about floor plan and special hardware can 
be widely applied. MissingFound is a prototype addressing these issue. 

Some previous localization solutions rely on access points (AP) have already presented in 
the surroundings to enable localization, which is similar to our system, such as Radar [3], 
PlaceLab [6] and Active Campus [7]. SurroundSense [8] builds a map using several features 
found in typical indoor spaces such as ambient sound, light, color, etc., in addition to WiFi 
RSSI. These solutions require calibrating WiFi RSSI at many physical locations as 
pre-deployment effort, building RF signal maps. And in two recent works, FM radio [9] and 
Channel Frequency Response [10] are explored to use as fingerprints instead of RSSI. Theses 
calibration process is time-consuming and may not scale over large areas. Unlike these 
systems, MissingFound does not require signal calibration. Our approach is straightforward: 
we rely on WiFi RSSI fingerprints of users’ trails to estimate the probability of seeing nearby 
missing people. Thus, MissingFound do not concern the users’ physical coordinates (as in 
GPS) and do not require any pre-deployment effort. 

Another line of research uses an RF propagation model (e.g., the log-distance path loss 
(LDPL) model) can be used to predict the RSSI at various locations, such as Lim et al. [11], 
TIX [12] and ARIADNE [13]. Using these models can reduce the pre-deployment effort 
dramatically but the accuracy decreased as cost. While these methods reduce the 
pre-deployment effort, they still require effort of placing infrastructure such as sniffers, 
obtaining information on the floor plans, and extending the capabilities of off-the-shelf APs, 
or at least knowledge of AP placement and power settings. MissingFound does not require 
these kinds of effort at all, and it takes use of the idea of LDPL model to design our 
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computational formula for similarity (Equation (1)), which is related to the two data points’ 
WiFi RSSI fingerprint independently. 

In another thread of research, the localization schemes relied on deploying specialized 
infrastructure to assist localization. During a calibration phase, The user’s position is 
estimated with the overheard signals and the data collected. For example, Cricket [14] and Bat 
[15] rely on ultrasound devices being deployed in the indoor environment as well as on the 
mobile devices. To perform localization, Active Badge [16] uses infrared (IR) beacons and 
receivers. Recently, some RFID based systems also have been proposed, such as 
LANDMARC [17]. Unlike these systems, MissingFound does not require any extra hardware 
or any beacons except the WiFi module on almost every smart phone and the WiFi APs 
already present in the surroundings. 

Authors in [18–22] have paid attention to the tradeoff between energy and location accuracy. 
They have tried to use WiFi/GSM based schemes as an alternative of GPS to avoid the 
continuous usage of GPS drain the battery in a few hours. Users in EZ [23] only need to obtain 
a GPS lock at the edges of the indoor environment (e.g., the entrance or a window). The other 
features of this system is quite similar to our system, such as no pre-deployment effort, does 
not require knowledge of floor plan, special hardware and AP placemet or power settings. It 
only works with existing WiFi APs surrounding and WiFi module on users’ smart phones, 
which are also the foundation of MissingFound. But dislike EZ, MissingFound does not 
concern the accurate location, does not determine the APs location and does not use GPS at all. 

8. Conclusion 
MissingFound is a novel, configuration-free assistant system to help find missing people via 
smart mobile crowdsourcing. Uploading users’ physical locations is neither necessary for the 
system nor comfortable to users. Instead, we show that by recording WiFi RSSI fingerprints 
during users’ movements, the probability of noticing the missing person can be calculated. 
Using this model, a group of users with highest probability of seeing the missing person can be 
selected out. To overcome the problem of high computational complexity in this calculation, a 
parallel and a heuristic algorithm in MapReduce are designed. We use these algorithms as 
components to develop MissingFound, and demonstrate the average accuracy of the selected 
users is high (0.7675) in our realistic experiments. Moreover, the time cost of selecting 
missing person for designed input scale (thousands of users with records of several days) is 
low (no longer than 2 minutes). We believe that MissingFound will not only significantly help 
find missing companions for people, but also boost a new trend in the design of mobile, 
multi-user collaboration and historical proximity sensing based applications. 
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