• Title/Summary/Keyword: printing property

Search Result 172, Processing Time 0.022 seconds

Study on the Cleaning Screen Printing using Alternative Cleaning Solvent of 1,1,1-TCE, CFC-113 (1,1,1-TCE, CFC-113 대체세정제를 이용한 스크린인쇄 세정연구)

  • Lee, Ki-Chang;Yoon, Cheol-Hun;Hwang, Sung-Kwy;Oh, Se-Young;Lee, Seok-Woo;Ryu, Jung-Wok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The field of printing use to pressurization ink using screen gassamer that is called screen printing. Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. Besides, cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic and vibration cleaning process be substituted for existing mixed cleaning method of dipping and polish.

Characteristic Changes on Nonwoven Fabric by Charcoal Printing (숯 날염에 의한 부직포의 특성 변화)

  • ;;;田村照子;小紫朋子
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.2
    • /
    • pp.303-311
    • /
    • 2004
  • The purposes of this study were to investigate characteristic changes on nonwoven fabric by the charcoal printing. It separate grind charcoal as two different size of particles 45-52${\mu}{\textrm}{m}$ and 53-65${\mu}{\textrm}{m}$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of charcoal printing on nonwoven fabric were to obselve surface changes by a scanning electron microscope, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property, deodoriration and antibacterial activity. The results were as follows: When charcoal powder concentration increased from 3 to 9%, K/S value also increased from 3.06 to 8.55. When charcoal concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared 140-160ion/cc from three different kinds of nonwoven fabrics in 3% and 9% charcoal concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity.

Printing performance of 3D printing cement-based materials containing steel slag

  • Zhu, Lingli;Yang, Zhang;Zhao, Yu;Wu, Xikai;Guan, Xuemao
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • 3D printing cement-based materials (3DPCBM) is an innovative rapid prototyping technology for construction materials. This study is tested on the rheological behavior, printability and buildability of steel slag (SS) content based on the extrusion system of 3D printing. 0, 8 wt%, 16 wt%, 24 wt%, 32 wt% and 40 wt% SS was replaced cement, The test results revealed that the addition of SS would increase the fluidity of the printed paste, prolong the open time and setting time, reduce the plastic viscosity, dynamic yield stress and thixotropy, and is beneficial to improve the pumping and extrudability of 3DPCBM. With the increase of SS content, the static yield stress developed slowly with time which indicated that SS is harmful to the buildability of printing paste. The content of SS in 3DPCBM can reach up to 40% at most under the condition of satisfying rheological property and buildability, it provides a reference for the subsequent introduction of SS and other industrial solid waste into 3DPCBM by explored the influence law of SS on the rheological properties of 3DPCBM.

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys (금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험)

  • Song, Yongwook;Kim, Jungjoon;Park, Suwon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Review : The Advanced Inkjet Printing Technology - UV curable Jet Ink - (총설 : 최신 잉크제트 인쇄기술 - UV 경화형 제트잉크 -)

  • Jeong, Kyoung Mo;Won, Jong Myung;Lee, Yong Kyu;Koseki, Ken'ichi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.46-56
    • /
    • 2014
  • The aim of this reviews is to introduce the information concerning design of the UV-curable jet ink composition in order to provide a good adhesive property on non-porous surface. In order to clarify the viscosity dependence of flying speed for the UV curable jet ink, rheological analysis and observation of the flying state of the ink were carried out. The relationship between ink formulas and adhesive property on non-porous surface was investigated. It was examined the adhesive property of radical polymerization type UV curable jet ink included hydrogen abstraction type photo-initiator, it was expected that the strong adhesive strength can be obtained between the ink and non-porous surface in this study. UV curable jet ink with a slight amount of water was prepared. Optimum ratio of the cationic polymerization type UV curable jet ink shows an adequate adhesive strength towards two kinds of non-porous surface such as glass, poly(vinyl chloride) when tests were conducted on the ink jet-printing test machine.

Stacking of functional inks for organic solar cell using inkjet printing (잉크젯 프린팅을 이용한 유기태양전지용 기능성 잉크의 적층)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Heui-Seok;Kang, Kyung-Tae;Kim, Jong-Seok;Cho, Young-Joon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.398-401
    • /
    • 2008
  • Inkjet printing is commonly used in the controlled deposition of solutions of functional materials in specific locations on a substrate, and it can provide easy and fast deposition of polymer films over a large area. which could become a way to manufacturer low cost solar cells. In the present study, inkjet printing technology is adopted to deposit functional layers of PEDOT/PSS solutions and P3HT/PCBM blends for organic solar cell. The results show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film could be achieved by a balance between ink property and substrate treatment. As a result, a power conversion efficiency of 2.0% has been accomplished a solar cells applying inkjet technology.

  • PDF

Studios on the Application of Starch for Paper Surface Sizing -The Influence of Surface Sizing Treatment with Starch on the Ink-jet Printing Property- (종이 표면 사이즈용 전분의 적용에 관한 연구 -잉크제트 인쇄품질에 미치는 영향-)

  • 윤지영;정경모;김창근;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • The print quality of a ink jet printer is generally affected by three major components of the printing process: printer, ink formulation, and paper. The result of this study indicated that the surface sized paper with oxidized starch and cationic starch differed ink jet print quality in terms of ink spread and black optical density of the print image. Paper properties, like air permeability and siting degree, which may influence the ink jet printing were also measured. It was found that black print quality was controlled by starch level and ionic charge on the paper surface. Cationic surface sizing starch improved black ink jet print quality.

A Study on Optical Analysis and Overprinting Sequence in 2-Color Solid Overprints (2색 중첩 민인쇄의 광학적 해석과 중첩인쇄 순서에 관한 연구)

  • 강상훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.2
    • /
    • pp.1-4
    • /
    • 1997
  • Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. besides, Cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic cleaning process be substituted for existing mixed cleaning method of dipping and polish.

  • PDF