• Title/Summary/Keyword: printed pattern

Search Result 331, Processing Time 0.034 seconds

Distortion of Printed Patterns in Printed Electronics (전자 인쇄에서의 인쇄 패턴 왜곡)

  • Kim, Chung-Hwan;Lee, Taik-Min;Kim, Dong-Soo;Choi, Byung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.74-80
    • /
    • 2007
  • The distortion of printed pattern is frequently observed in gravure offset printing process, which can be a serious problem in printing process for printed electronics. The mechanism of pattern distortion is studied and the factors which affect the amount and shape of distortion are found using FEM. The amount and shape of distortion is influenced by material properties of the roller, thickness of roller, applied load, and so on. As the printing pressure increases and Possion ratio increases, the degree of the image distortion increases. And the increase of the thickness of rubber roller brings a large distortion of image, too. In some cases, the distortion of printed pattern can reach a few hundred micromillimeters. The comparison of the experiment result and the simulation result shows good agreement in their quantitative tendency.

Statistical Analysis for Thickness and Surface Roughness of Printed Pattern in Roll-to-Roll Printed Electronics System (롤투롤 인쇄전자 시스템에서 인쇄패턴의 두께와 표면조도에 관한 통계적 분석)

  • Lee, Chang Woo;Kim, Nam Seok;Kim, Chang Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The roll-to-roll (R2R) printed electronics system is one of the most promising technologies for the printed electronics industry because of several advantages in terms of productivity and cost. In the R2R printed electronics system, the characteristics of the printed patterns are an important issue that determines the functional quality of the printed matter. This study analyzed how several main factors may affect the characteristics of printed patterns, especially the thickness and surface roughness. The statistical model for estimation of the printed pattern was developed as a function of the main factors using the design of experiment (DOE) methodology. Based on the statistical analysis results, the R2R printed electronics system can be designed to control the characteristics of printed patterns.

Accuracy Improvement of Screen Printed Ag Paste Patterns on Anodized Al for Electroless Ni Plating (무전해 Ni 도금을 위한 양극 산화막위에 스크린 인쇄된 Ag 페이스트 패턴의 정밀도 개선)

  • Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.397-402
    • /
    • 2017
  • We used an etching process to control the line-width of screen printed Ag paste patterns. Ag paste was printed on anodized Al substrate to produce a high power LED. In general, Ag paste spreads or diffuses on anodized Al substrate in the process of screen printing; therefore, the line-width of the printed Ag paste pattern increases in contrast with the ideal line-width of the pattern. Smudges of Ag paste on anodized Al substrate were removed by neutral etching process without surface damage of the anodized Al substrate. Accordingly, the line-width of the printed Ag paste pattern was controlled as close as possible to the ideal line-width. When the etched Ag paste pattern was used as a seed layer for electroless Ni plating, the line width of the plated Ni film was similar to the line-width of the etched Ag paste pattern. Finally, in pattern formation by Ag paste screen printing, we found that the accuracy of the line-width of the pattern can be effectively improved by using an etching process before electroless Ni plating.

Roll-to-Roll Gravure Offset Printing System for Printed Electronics (인쇄전자를 위한 롤투롤 그라비아 옵셋 인쇄 장비)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Lim, Kyu-Jin;Lee, Myung-Hoon;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.461-466
    • /
    • 2007
  • There has been a great interest in printing technology as a low cost and mass production method for the application of printed electronics such as printed TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatuses of gravure-offset printing are developed for fine line-width/gap printing and examining pattern distortion occurred in gravure-offset printing process. The fine line-width/gap pattern shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. Pattern distortion is modeled, and the amount and shape of the distortion are calculated by using commercial FEM code. The roll-to-roll printing system under development consists of unwinder/rewinder, two printing units, one coating unit, drying units, guiding unit, vision system, and other auxiliary devices. For multi-layer printing, the system is designed to be capable of printing two different materials.

  • PDF

Optimization of Printing Conditions Using Design Experiments for Minimization of Resistances of Electrodes in Roll-to-roll Gravure Printing Process (롤투롤 그라비어 방식의 인쇄 전극 저항 최소화를 위한 실험계획법 적용 인쇄 공정 조건 최적화)

  • Lee, Sang Yoon;Kim, Cheol;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.351-356
    • /
    • 2017
  • The resistance of printed patterns for electrodes fabricated using printing technology should be minimized. This parameter depends on the pattern width and thickness; however, from the viewpoint of printability, the printed patterns should be printed at the designed width. The resistance of the printed patterns as well as printability is affected by various printing conditions. In this paper, the printing condition is optimized to minimize the resistance of electrodes printed by the roll-to-roll gravure method. This is done by considering the spread ratio of pattern width as a parameter of printability using design experiments. The drying temperature, dryer fan speed, and printing speed are selected as effective factors for the experiment objective. The optimized conditions are obtained and reproducibility test using these demonstrates that the optimized conditions can produce low-resistance electrodes for printability of the pattern width.

A study on the Relation between Strain & Conductivity of the Printed Pattern in Post-Printing Section of Roll to Roll process (롤투롤 공정의 인쇄 후 구간에서 변형률과 인쇄한 패턴의 전기 전도도와의 관계에 대한 연구)

  • Choi, Jae-Ho;Lee, Chang-Woo;Shin, Kee-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.877-880
    • /
    • 2009
  • A curing process in post-printing section of R2R process is required for an electrical property of the printed pattern when devices such as RFID, Solar cell are printed. PEN as well as heat-stabilized PET which is used as a plastic substrate would be deformed at high temperature due to change of its elastic modulus. And crack in the printed pattern, which is on the plastic substrate is occurred due to the deformation of the substrate. The occurrence of crack causes electrical resistance to increase and the quality of the device to deteriorate. In case of RFID antenna, the range of reading distance is shortened as the electrical resistance of the antenna is increased. Therefore, the deformation of the plastic substrate, which causes the occurrence of crack, should be minimized by setting up low operating tension in R2R process. In low tension, slippage between a moving substrate and a roller would be generated when the operating speed is increased. And scratch would be occurred when slippage is generated due to an air entrainment, which is related to the thickness of the air film. The thickness of the air film is increased when operating speed is increased as shown by simulation based on mathematical model. The occurrence of scratch in conductive pattern printed by roll to roll process is a critical damage because it causes degradation or failure of electrical property of it.

Development of 3D Printed Shoe Designs Using Traditional Muntin Patterns

  • Lim, Ho Sun
    • Fashion & Textile Research Journal
    • /
    • v.19 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • This study proposes 3D printed shoe designs with patterns made by reinterpreting traditional Korean muntin patterns as customized designs that are unique to individual consumers and different from existing products. In the fashion industry, shoes with diverse designs grafted with 3D printing technology have been introduced. Artistic 3D printed shoes showcase the unique designs of designers. Functional and practical 3D printed shoes that can be worn during daily activities and during exercise have been actively developed. Traditional Korean pattern designs are also being recreated into designs reflecting the aesthetic sense of modern times with our own identity. The uniqueness of the traditional muntin patterns in geometric shapes, such as intersections of lines, rectangles, and octagons, are expressed in shoe designs with modern aesthetic senses by utilizing the traditional patterns that conform well to the modern geometric beauty of forms. This study was intended to develop 3D shoe designs that reinterpreted the motif of muntin patterns from among traditional Korean geometric patterns with a modern aesthetic sense. The octagonal patterns that express the scenery of spring can be seen through the muntins in traditional Korean-style houses were designed on the heels of shoes. Utilizing the Rhino CAD program and ProJet 660 Pro 3D printer, shoes were designed and printed. The processes for making shoes using 3D printing technology proposed in this study are significant because they represent the creation of designs in a new area. The results of this study might help in the development of 3D printed fashion products.

Properties of Inkjet and Screen Printed Circuits with Substrate Treatments

  • Lee, Min-Su;Kim, Yong-Uk;Kim, Yeong-Hun;Yu, Ui-Deok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.4.1-4.1
    • /
    • 2011
  • Recently, circuit printing technology has been considered as a promising alternative to conventional PCB fabrication, for it can greatly reduce the manufacturing costs. Even though printed circuit has many advantages over typical subtractive technology such as fewer processes, it has some disadvantages. The major problems are low adhesion and poor resolution. Efforts to overcome these problems have been mainly focused on ink developments with a limited success. And surface treatments showed some improvements. Therefore, various plasma treatments and primer coatings on plastic substrates have been tested. Plasma treatments using hydrocarbon gases including methane and propane improved the pattern quality of the inkjet printed circuit, which are further improved upon heating of substrate. On the other hand, there is little effect on the adhesion, which is improved only by a special primer coating. The adhesion of inkjet printed circuit has been increased more than 10 times upon treatment. As for the screen printed circuits, the overall effects are less significant since there is some organic binder in the ink. Nonetheless, the treatment has strong positive effects on pattern quality and adhesion. The adhesion of 1 kgf/cm2, which is comparable with those of the conventional PCB circuits, is possible through primer coating for both screen and inkjet printed circuits. The resulting circuit also showed good thermal, mechanical and electrical properties.

  • PDF

A Study on the Development of 3D printed garments for Fashion Show (패션쇼를 위한 3D 프린팅 의상 디자인 개발 연구)

  • Lee, Hyunseung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.267-276
    • /
    • 2019
  • This study develops 3D-printed-garment collections for a fashion show presentation. A design concept using traditional patterns that consisted of garments regarding the limitation of the printing technology was investigated in order to develop the collection. The structures of the connecting joints of the textile parts which could be easily and sturdily interconnected were invented. Wearability as garments that could be naturally worn on the human body were sought. As a result, four 3D-printed-garments were developed. The 1st garment composed of objects based on a 'Yeon-Dang-Cho'-pattern was constructed as a geometric robe style using a FDM 3D printer and transparent TPU filaments. The 2nd and 3rd 3D-printed-garments composed of an object based on a 'Boe-Sang-Hwa'-pattern was constructed as a distorted one-piece exaggerating the silhouettes of shoulders and waist parts as well as a straight asymmetric tunic style that used the same printer and material as the 1st garment. The last garment composed of an object based on a 'Boe-Sang-Hwa'-pattern printed using a SLA 3D printer and flexible-liquid-resin was constructed attaching the objects on the fabric material by the hot-press machine. The four developed garments were presented in the opening fashion show of 'the 6th International 3D-printing Korea Expo'. This study provides a basic case for related studies to adapt 3D-printing technology in textile pattern development of garment construction.