• Title/Summary/Keyword: print-scan

Search Result 16, Processing Time 0.021 seconds

LPM-Based Digital Watermarking for Forgery Protection in Printed Materials (인쇄물의 위조 방지를 위한 LPM기반의 디지털 워터마킹)

  • Bae Jong-Wook;Lee Sin-Joo;Jung Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1510-1519
    • /
    • 2005
  • We proposed a digital watermarking method that it is possible to identify the copyright because the watermark is detected in the first print-scan and to protect a forgery because the watermark is not detected in the second print-scan. The proposed algorithm uses LPM and DFT transform for the robustness to the distortion of pixel value and geometrical distortion. This methods could improve watermark detection performance and image quality by selecting maximum sampling radius in LPM transform. After analyzing the characteristics of print-scan process, we inserted the watermark in the experimentally selected frequency bands that survives robustly to the first print-scan and is not detected in the second print-scan, using the characteristic of relatively large distortion in high frequency bands of DFT As the experimental result, the original proof is possible because average similarity degree 5.13 is more than the critical value 4.0 in the first print-scan. And the detection of forgery image is also possible because average similarity degree 2.76 is less than the critical value 4.0 in the second print-scan.

  • PDF

Suggestion of OSMU Content New Business Market through Development of Integrated Platforms for Software-oriented Tailored Costume Production (소프트웨어 중심의 주문 형 의상제작 융합플랫폼 개발을 통한 OSMU콘텐츠 뉴비즈니스 시장 창출 제안)

  • Jung, Minsoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.1021-1026
    • /
    • 2018
  • 3D SCAN enables easy human body measurement via a digital method in the process of film costume production which used to be done manually. Software-oriented computer graphic, which integrates 3D SCAN data in the process of manual film costume production, can induce quick and diverse design outcomes. While, 3D PRINT, which integrates computer graphic data in the process of manual film costume production, can automate the process of special costume production using a digital method. Integration of 3D Scan + Computer Graphic + 3D Print using integrated platforms for tailored costume production as developed in this study allows significant reduction of costume production period and costs. It also allows efficient integration of costume production outcomes in various industries related with OSMU contents in particular. In other words, using it, we can create a new business market that integrates multiple areas of film content, drama content and game content.

Temple and Maternity Ward Security using FPRS

  • Ambeth Kumar, V.D.;Ramakrishnan, M.;Jagadeesh Kannan, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.633-637
    • /
    • 2013
  • A wide range of applications for Foot Print Recognition System is discussed in this paper. The whole concept works under the principle that foot print is a parameter associated with biometrics that is very common as well as distinct. Its foremost application is at the government hospitals in the under developed and third world nations where there aren't the best of facilities. This system can be applied in the maternity ward of the hospitals for the identification or differentiation of the infants. Till date there has been no specialized system adopted for this purpose. The Foot Print Recognition System will overcome all the defects of any biometrics when applied here. Since the child will be very delicate for an iris scan and it will not be able to open its eyes wide or to correctly place its finger print on the sensor since the hands of a new born infant will be closed for a while. The Foot Print Recognition system can also be implemented in temples where there are cases of theft often reported. This can be used to grant access to the karpagraham of the deity by authorized users alone. These 2 applications of FPRS are discussed in this paper.

3D Reconstruction of 3D Printed Medical Metal Implants (3D 출력 의료용 금속 임플란트에 대한 3D 복원)

  • Byounghun Ye;Ku-Jin Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.229-236
    • /
    • 2023
  • Since 3D printed medical implant parts usually have surface defects, it is necessary to inspect the surface after manufacturing. In order to automate the surface inspection, it is effective to 3D scan the implant and reconstruct it as a scan model such as a point cloud. When constructing a scan model, the characteristics of the shape and material of the implant must be considered because it has characteristics different from those of general 3D printed parts. In this paper, we present a method to reconstruct the 3D scan model of a 3D printed metal bone-plate that is one kind of medical implant parts. Multiple partial scan data are produced by multi-view 3D scan, and then, we reconstruct a scan model by alignment and merging of partial data. We also present the process of the scan model reconstruction through experiments.

Print-Scan Resilient Curve Watermarking using B-Spline Curve Model and its 2D Mesh-Spectral Transform (B-스프라인 곡선 모델링 및 메시-스펙트럼 변환을 이용한 프린트-스캔에 강인한 곡선 워터마킹)

  • Kim, Ji-Young;Lee, Hae-Yeoun;Im, Dong-Hyuck;Ryu, Seung-Jin;Choi, Jung-Ho;Lee, Heung-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.307-314
    • /
    • 2008
  • This paper presents a new robust watermarking method for curves that uses informed-detection. To embed watermarks, the presented algorithm parameterizes a curve using the B-spline model and acquires the control points of the B-spline model. For these control points, 2D mesh are created by applying Delaunay triangulation and then the mesh spectral analysis is performed to calculate the mesh spectral coefficients where watermark messages are embedded in a spread spectrum way. The watermarked coefficients are inversely transformed to the coordinates of the control points and the watermarked curve is reconstructed by calculating B-spline model with the control points. To detect the embedded watermark, we apply curve matching algorithm using inflection points of curve. After curve registration, we calculate the difference between the original and watermarked mesh spectral coefficients with the same process for embedding. By calculating correlation coefficients between the detected and candidate watermark, we decide which watermark was embedded. The experimental results prove the proposed scheme is more robust than previous watermarking schemes against print-scan process as well as geometrical distortions.

3D Facial Scanners: How to Make the Right Choice for Orthodontists

  • Young-Soo Seo;Do-Gil Kim;Gye-Hyeong Lee;Kyungmin Clara Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • With the advances of digital scanning technology in dentistry, the interests in facial scanning in orthodontics have increased. There are many different manufacturers of facial scanners marketing to the dental practice. How do you know which one will work best for you? What questions should you be asking? We suggest a clinical guideline which may help you make an informed decision when choosing facial scanners. The characteristics of 7 facial scanners were discussed in this article. Here are some considerations for choosing a facial scanner. *Accuracy: For facial scanners to be of real value, having an appropriate camera resolution is necessary to achieve more accurate facial image representation. For orthodontic application, the scanner must create an accurate representation of an entire face. *Ease of Use: Scanner-related issues that impact their ease of use include type of light; scan type; scan time; file type generated by the scanner; unit size and foot print; and acceptance of scans by third-party providers. *Cost: Most of the expenses associated with facial scanning involve the fixed cost of purchase and maintenance. Other expenses include technical support, warranty costs, transmission fees, and supply costs. This article suggests a clinical guideline to make the right choice for facial scanner in orthodontics.

The tap-scan method for damage detection of bridge structures

  • Xiang, Zhihai;Dai, Xiaowei;Zhang, Yao;Lu, Qiuhai
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-191
    • /
    • 2010
  • Damage detection plays a very important role to the maintenance of bridge structures. Traditional damage detection methods are usually based on structural dynamic properties, which are acquired from pre-installed sensors on the bridge. This is not only time-consuming and costly, but also suffers from poor sensitivity to damage if only natural frequencies and mode shapes are concerned in a noisy environment. Recently, the idea of using the dynamic responses of a passing vehicle shows a convenient and economical way for damage detection of bridge structures. Inspired by this new idea and the well-established tap test in the field of non-destructive testing, this paper proposes a new method for obtaining the damage information through the acceleration of a passing vehicle enhanced by a tapping device. Since no finger-print is required of the intact structure, this method can be easily implemented in practice. The logistics of this method is illustrated by a vehicle-bridge interaction model, along with the sensitivity analysis presented in detail. The validity of the method is proved by some numerical examples, and remarks are given concerning the potential implementation of the method as well as the directions for future research.

3D Printed customized sports mouthguard (3D 프린터로 제작하는 마우스가드)

  • Ryu, Jae Jun;Lee, Soo Young
    • The Journal of the Korean dental association
    • /
    • v.58 no.11
    • /
    • pp.700-712
    • /
    • 2020
  • The conventional mouthguard fabrication process consists of elastomeric impression taking and followed gypsum model making is now into intraoral scanning and direct mouthguard 3D printing with an additive manufacturing process. Also, dental professionals can get various diagnostic data collection such as facial scans, cone-beam CT, jaw motion tracking, and intraoral scan data to superimpose them for making virtual patient datasets. To print mouthguards, dental CAD software allows dental professionals to design mouthguards with ease. This article shows how to make 3D printed mouthguard step by step.

  • PDF

Automatic Measuring System Developement of Slab Inner Crack and Center Segregation (슬라브 내부 크랙 및 중심편석 자동 판정 시스템 개발)

  • Kim, Sung-Yong;Lee, Su-Hyun;Ahn, In-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.332-334
    • /
    • 2009
  • This thesis puts forward a suggestion of measuring inner crack and center segregation in steel processing by using scanner and image processing with sulfur printer. This is a system to scan according to the program, to choose the size of the specimen and to press the 'Measurement' button, come to a check result, to send the result to the server, and to save the data and check the measurement result in web. To sum up, there are three points in this system.

  • PDF

Pet Registration and Information Providing System Utilizing QR Code (QR 코드를 이용한 애완동물 등록 및 정보제공 시스템)

  • Shin, Dong-Eun;Heo, Jun-Mu;Son, Yeong-Bin;Kim, Yong-Seok
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.33-37
    • /
    • 2014
  • The current companion animal registration system is based on implanting microchip into animal body. Thus, the maintenance cost is high, and it may cause dangerous effect on the animal health. Moreover, it is very inconvenient in utilizing the information. This paper presents a pet registration and information providing system based on QR code for low cost and convenience in field application. The owner can simply register pet information on the web server, print the QR code and attach it to the pet. Any person can scan the QR code by smart phone, identify the information, and call the owner directly.

  • PDF