• 제목/요약/키워드: principle component analysis (PCA)

검색결과 182건 처리시간 0.022초

3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계 (Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition)

  • 오성권;오승훈
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

A Study on Sensory Properties of Backsulgi using Dry Non-Glutinous Rice Flour

  • Park, Young Mi;Yoon, Hye Hyun
    • 한국조리학회지
    • /
    • 제20권5호
    • /
    • pp.34-42
    • /
    • 2014
  • The study explores the sensory properties of Backsulgi prepared with dry non-glutinous rice flour sweetened with various sweeteners(sugar, honey, oligosaccharide, trehalos, erythritol and accesulfame K). Sensory attributes of Backsulgi were evaluated by quantitative descriptive analysis(QDA), PCA and PLSR. The QDA results revealed that the sample sweetened with trehalose showed highest value in dryness, and samples with accesulfame K, honey and erythriol had relatively high levels in moisture and springiness. Principle component analysis (PCA) results showed 78.89 % of the total variation with PC1 (54.92%) and PC2 (23.98%), respectively. The samples with accesulfame K(AF) and honey, which showed high values in moisture level, springiness and sweet taste, showed similar attributes which led to a positive direction of PC1. The correlation between the sensory attributes and consumer acceptance showed that the most important factors for high consumer acceptance were moistness, springiness, sweet taste and sweet flavor. Overall, the samples with accesulfame K(AF) had the closest position in the PLSR results with highest overall consumer satisfaction.

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • 통합자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

다변량분석법을 활용한 농업용 저수지 수질유형분류 (Classification of Agricultural Reservoirs Using Multivariate Analysis)

  • 최은희;김형중;박영석
    • 한국관개배수논문집
    • /
    • 제17권2호
    • /
    • pp.17-27
    • /
    • 2010
  • In order to manage the water quality in reservoir, it is necessary to understand the temporal and spatial variation of reservoirs and to classify the reservoirs. In this research, agricultural reservoirs are classified according to physical characteristics (depth, residence time, shape of the reservoir etc) and water quality using multivatriate analysis (PCA and CA). CA (Cluster Analysis) method classify reservoirs into several groups as a similarity of the reservoirs, but it is difficult to indicate a full list to the one table. In case of PCA (Principle Component Analysis) method, it has the advantage for the classification on the reservoirs depending on the water quality similarity and also it is useful to analyze the relationship between related factors through correlation analysis. However PCA is limited to classify into several groups based on the characteristics of the reservoirs and each user should be classified as randomly subjective according to the relative position of the reservoir in the figure. In conclusions, compared to conventional reservoirs classification methods, both CA and PCA methods are considered to be a classification method that describes the nature of the reservoir well, but classification results has a restriction on use, so further research will be needed to complement.

  • PDF

국가해양력시스템의 구조모델과 평가에 관한 연구(I) (A Study on the Structural Model and Evaluation of National Maritime Power System(I))

  • 임봉택;이철영
    • 한국항만학회지
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2000
  • For composing the structure model of national maritime power system by system structural modeling, in this study, the 50 basic factors are selected by survey of the extensive and through literatures on maritime, sea, maritime power and sea power. And the basic factors are classified into 36 component factors by cluster method. The 9 attributes are extracted by the application of the principle component analysis method, one of the factor analysis method in system engineering, to component factors. In this study, we define the attributes composing the national maritime power system by integrating the result of this study and existed our studies relating to this topic. Which are showed in Table 2. and we show the structure model of national maritime power system in Fig. 3. In Table 2, the 9 attributes are as follows : the fundamental power of maritime, shipping and port power, naval power, fishing power, shipbuilding power, the power of ocean research and development, dependency on seaborne trade, the protection power of ocean environment and the will and inclination of govemment. Also, in the case of evaluating this system, we conform the importance of considering the interactions among the attributes which have strong interactions in structure model of national maritime power system.

  • PDF

국가해양력시스템의 구조모델화에 관한 연구 (A Study on the Structural Modelling of National Maritime Power System)

  • 임봉택;이철영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.153-161
    • /
    • 1999
  • For composing the structure model of national maritime power system by system structural modelling, in this study, the 50 basic factors are selected by survey of the extensive and thorough literatures on maritime, sea, maritime power and sea power. And the basic factors are classified into 36 component factors by cluster method. The 9 attributes are extracted by the application of the principle component analysis method, one of the factor analysis method in system engineering, to component factors. We defined the attributes composing the national maritime power system by integration the result of this study and existed our studies relate to this topic. Which are showed in table 8. and we showed the structure model of national maritime power system in figure 3. In table 8, the 9 attributes are as follows: the fundamental power of maritime, shipping and port power, naval power, fishing power, shipbuilding power, the power of ocean research and development, dependency on seaborne trade, the protection power of ocean environment and the will and inclination of government.

PCA 기법을 이용한 폐탄광 지역의 지반침하 관련 요인 추출 (Extract the main factors related to ground subsidence near abandoned underground coal mine using PCA)

  • 최종국;김기동
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2007
  • 본 연구에서는 폐탄광 지역에서 발생하는 지반침하에 영향을 주는 주요 요인들을 추출하기 위하여 다변량 통계분석 방법의 하나인 주성분분석(Principle Component Analysis : PCA)기법과 지리정보시스템 (Geographic Information System : GIS)을 이용하였다. 이를 위해 연구지역에서 수행한 지표지질조사, 정밀조사, 실내암석시험 등으로부터 취득된 자료를 데이터베이스로 구축하고, 지반침하 위험지역 분포를 공간적으로 해석할 수 있는 지질, 토지이용, 경사도, 지표로부터 지하 갱도까지의 심도, 갱도의 지표상 위치로부터의 수평거리, 지하수심도, 투수계수, RMR(Rock Mass Rating) 값을 분석대상으로 선정하였다. 각 요인들이 연구지역 전체에 걸쳐 분포하도록 GIS의 공간분석 기법의 하나인 표면분석(Surface Analysis), 버퍼링기법(Buffering) 및 내삽법(Interpolation)을 이용하여 래스터 데이터베이스로 구축하고 이로부터 추출된 자료들을 입력값으로 하는 주성분분석을 수행하였다. 주성분분석 결과 폐탄광 지역의 지반침하에 영향을 주는 주요인을 추출하는 것이 가능하였으며, 연구지역은 지질 및 지반강도 관련 요인이 침하발생의 가장 큰 요인인 것으로 분석되었다.

  • PDF

PCA-LDA 알고리즘을 이용한 고체절연물의 열화도 판별 (Evaluation on Degradation of Solid Insulator by PCA-LDA algorithm)

  • 박성희;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2079-2081
    • /
    • 2005
  • Electrical treeing occurrence is caused by some defect in solid insulator. Those are accompany the PD(partial discharge) occurrence. And lifetime of the insulator is affected by PD. So, detection of electrical treeing is important thing as this view. Especially, detection of the end treeing is more important and have meaning for industrial engineering because concerned with maintenance and replacement of equipment. In this paper, evaluation of treeing process were studied and PCA(principle component analysis)-LDA(linear discriminant analysis) as classification method were used. The result is present the good recognition.

  • PDF

Probabilistic penalized principal component analysis

  • Park, Chongsun;Wang, Morgan C.;Mo, Eun Bi
    • Communications for Statistical Applications and Methods
    • /
    • 제24권2호
    • /
    • pp.143-154
    • /
    • 2017
  • A variable selection method based on probabilistic principal component analysis (PCA) using penalized likelihood method is proposed. The proposed method is a two-step variable reduction method. The first step is based on the probabilistic principal component idea to identify principle components. The penalty function is used to identify important variables in each component. We then build a model on the original data space instead of building on the rotated data space through latent variables (principal components) because the proposed method achieves the goal of dimension reduction through identifying important observed variables. Consequently, the proposed method is of more practical use. The proposed estimators perform as the oracle procedure and are root-n consistent with a proper choice of regularization parameters. The proposed method can be successfully applied to high-dimensional PCA problems with a relatively large portion of irrelevant variables included in the data set. It is straightforward to extend our likelihood method in handling problems with missing observations using EM algorithms. Further, it could be effectively applied in cases where some data vectors exhibit one or more missing values at random.

Multi-Face Detection on static image using Principle Component Analysis

  • Choi, Hyun-Chul;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.185-189
    • /
    • 2004
  • For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.

  • PDF