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Abstract
A variable selection method based on probabilistic principal component analysis (PCA) using penalized like-

lihood method is proposed. The proposed method is a two-step variable reduction method. The first step is based
on the probabilistic principal component idea to identify principle components. The penalty function is used to
identify important variables in each component. We then build a model on the original data space instead of
building on the rotated data space through latent variables (principal components) because the proposed method
achieves the goal of dimension reduction through identifying important observed variables. Consequently, the
proposed method is of more practical use. The proposed estimators perform as the oracle procedure and are
root-n consistent with a proper choice of regularization parameters. The proposed method can be successfully
applied to high-dimensional PCA problems with a relatively large portion of irrelevant variables included in the
data set. It is straightforward to extend our likelihood method in handling problems with missing observations
using EM algorithms. Further, it could be effectively applied in cases where some data vectors exhibit one or
more missing values at random.

Keywords: probability model, variable selection, penalized likelihood, EM algorithm, non-convex
penalty, oracle estimators

1. Introduction

Dimension reduction is an important topic in statistics and other fields such as image processing, data
compression, pattern recognition, and statistical data mining. Dimension reduction is becoming more
important due to the increase in the size of data and a larger number of variables to consider in the
information age. Principal component analysis (PCA; Jolliffe, 2002) is a frequently used method in
dimension reduction especially in multivariate statistical analysis. PCA often gives a relatively small
number of linear combinations of variables that can effectively explain a large portion of the variance
in a given data set. Each component still includes many non-zero coefficients on irrelevant variables
(i.e., it poses an interpretation problem especially when the number of non-zero coefficients is large).

Several methods are available to aid the interpretation when each component has many non-zero
coefficients. Jolliffe (1972, 1973) examined methods that discard irrelevant variables based on thresh-
old values using multiple correlations, PCA itself, and clustering.These methods are very simple;
however, this might be misleading as pointed out by Cadima and Jolliffe (1995). Other methods that
aid in the interpretation of principal components include orthogonal rotation, similar to those used in
factor analysis (Jolliffe, 1989, 1995), that restrict the coefficients of the components to a small set of
possible values such as −1, 0, 1 (Hausman, 1982; Vines, 2000) and to introduce penalty functions to
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force the coefficients of irrelevant variables to zero (Jolliffe, 2002). Jolliffe (1995) pointed out the
rotation method might have problems and the L1 penalty function proposed by Jolliffe et al. (2003)
might cause bias on coefficient estimates. Zou et al. (2006) exploit the regression/reconstruction
error property of principal components in order to obtain sparse principal components. Witten et
al. (2009) proposed a penalized matrix decomposition with L1 penalty that results in a regularized
version of singular value decomposition for sparse principal components and canonical correlation
analysis. These are able to enhance computing efficiency applicability from principal components
to other methods; however, still we need more advanced algorithms when we decide to use other
non-convex penalties like hard penalties or smoothly clipped absolute deviation (SCAD) rather than
least absolute shrinkage and selection operator (LASSO) type L1 penalty function. Xie et al. (2010)
generalize existing penalized model-based clustering approaches for mixture of factor analyzers with
application to clustering.

In this article, we use several L1 type and non-convex penalty functions that include the hard
thresholding (HARD) penalty function proposed by Antoniadis (1997) and Fan (1997) along with
probabilistic PCA (PPCA) proposed by Tipping and Bishop (1999a, 1999b) to solve the problem of
non-zero coefficients on irrelevant variables. PPCA enables us to utilize the likelihood idea to prove
that the consistency and the sparsity of coefficients estimates along with asymptotic normality could
be established through the convex and non-convex penalty functions. We show that the method works
as well as if the correct sub-model were known with or without missing observations at random.

In Section 2, the PPCA with latent variable model will be introduced. In Section 3, three penalty
functions, HARD, SCAD, and LASSO (Jolliffe et al., 2003) will be added to the PPCA established
in Section 2. Procedures for finding the maximum likelihood estimates (MLE) through EM algorithm
are given in Section 4. In Section 5, simulation studies and real examples are given. We conclude in
Section 6.

2. Probabilistic PCA with latent variables model

PCA (Jolliffe, 2002) is a well-known technique for dimension reduction for multivariate data sets and
can be expressed as a latent variable model (Anderson and Rubin, 1956; Lawley, 1953). Tipping and
Bishop (1999b) has shown that PCA may be viewed as a maximum likelihood procedure based on a
probability density model of the observed data.

Suppose that we have p-dimensional data vectors {xn}, n ∈ {1, . . . ,N} and sample covariance
matrix S =

∑
n(xn − x̄)(xn − x̄)T /N, where x̄ is the data sample mean with N observations. Standard

PCA is the same as the solving the eigenvalue problem

Swj = δj wj for j = 1, . . . , q.

Then the q principal components of the observed vector xn are

cn =WT (xn − x̄) with W = (w1,w2, . . . ,wq)

such that q (≤ p) principal axes wj are those orthonormal axes onto which the retained variance under
projection is maximal. The components cn are then uncorrelated such that the covariance matrix
ΣncncT

n /N is diagonal with elements δjs.
This PCA can be expressed as a latent variable model that relates p-dimensional random vector x

to a corresponding q-dimensional vector of latent variables c as

x =Wc + µ + ϵ (2.1)
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with the conventional assumption of c ∼ N(0, I). Using the isotropic noise model N(0, σ2I) for ϵ in
conjunction with equation (2.1) implies that the c-conditional probability distribution over x-space is
given by

x|c ∼ N
(
Wc + µ, σ2I

)
.

The marginal distribution for x is obtained by integrating the latent variables and is also normal:

x ∼ N (µ,Ψ) ,

with Ψ = WWT + σ2I. If we replace σ2I in Ψ with a diagonal matrix of positive but different values
for each diagonal elements, then it becomes a well-known factor analysis. Finally, the log-likelihood
for W and σ2 becomes

l(W, σ2) = −N
2

{
p ln(2π) + ln |Ψ| + tr

(
Ψ−1Σ

)}
,

where

Σ =
1
N

N∑
n=1

(xn − µ)(xn − µ)T .

Tipping and Bishop (1999b) suggested using the iterative EM algorithm to find estimates for W
and σ2 and mentioned that it could be effectively applied in cases where some of the data vectors
exhibit one or more missing values at random and in other situations. We can find the conditional
distribution of the latent variable c given the observed x, that may be calculated using Bayes’ rule,

c|x ∼ N
(
M−1WT (x − µ), σ2 M−1

)
,

with M =WT W + σ2I.

3. Penalized probabilistic PCA

We can consider the problem of extending the penalized likelihood idea to PPCA for variable selection
in each principal component. A form of penalized likelihood becomes

l
(
W, σ2

)
− N

p∑
i=1

q∑
j=1

pλ(wi j),

with wi j as the element of W in its ith row and jth column and pλ(·) as a penalty function. Fan and
Li (2001) argued that unbiasedness, sparsity, and continuity are three properties possessed by a good
penalty function, and suggested the SCAD penalty function as the best one for regression problems.

Several well-known penalty functions including SCAD penalty function are as follows.

1. Lp: pλ(wi j) = λ|wi j|p and it becomes LASSO with p = 1 for least squares case.

2. HARD penalty:

pλ(wi j) = λ2 − (|wi j| − λ)2I(|wi j| < λ).
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3. SCAD penalty:

pλ(wi j) =



λwi j, if wi j < λ,

−
w2

i j − 2aλwi j + λ
2

2(a − 1)
, if λ ≤ wi j < aλ,

(a + 1)λ2

2
, if wi j ≥ aλ.

Unfortunately, none of three penalty functions simultaneously satisfy all of three properties men-
tioned above. Lp penalty function is biased and this causes serious problems especially when applied
to PCA problems in which coefficients compete with each other due to orthonormality conditions.
Fan and Li (2001) noted that consistency and oracle properties cannot be satisfied simultaneously
for the L1 penalty. The HARD penalty function is unbiased and sparse, but not continuous. SCAD
behaves somewhat between L1 and HARD and needs two dimensional burdensome generalized cross-
validation (CV) or usual CV to find optimal values for two parameters, a and λ.

Overall, it appears reasonable to use HARD penalty for the PCA problem since it seems better
at forcing coefficients of irrelevant variables to zero (Tables 1–3) and at the same time in preserv-
ing original directions after introducing the penalty function (Figure 1) in the maximum likelihood
procedure.

The consistency and sparsity of the HARD and SCAD penalty function for our nonconcave pe-
nalized PPCA (PenPPCA) estimator can be established through similar procedures in Fan and Li
(2001) or Fan and Peng (2004). There exists a penalized likelihood estimator that converges at the
rate Op(n−1/2 + an), where an = maxi{p′λn

(wi j) : wi j , 0}. This implies that for the HARD and SCAD
penalty functions, the penalized likelihood estimator is root-n consistent if λn → 0. Furthermore, it
can be shown that such a root-n consistent estimator must satisfy ŵ2 = 0 and this implies that the
penalized likelihood estimator performs as well as if w20 = 0 were known under the assumption that
the single selected component of W can be divided as

w0 = (w10, . . . ,wp0) =
(
wT

10,w
T
20

)T

and w20 = 0 without loss of generality.

4. MLE with EM algorithm

MLE can be obtained via the EM algorithm (Green, 1990) as treating cn as missing so completing the
data set as (xn, cn) (Tipping and Bishop, 1999b). The corresponding complete-data log-likelihood is:

lx,c =

N∑
n=1

ln{ f (xn, cn)},

with

f (xn, cn) =
(
2πσ2

)− p
2 exp

{
−||xn −Wcn − µ||2

2σ2

}
(2π)−

q
2 exp

{
||cn||2

2

}
.
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Table 1: Average and standard deviation (in parenthesis) of the number of correct and incorrect 0 coefficients
for W1 and W2 with L1

W1 W2
N λ Correct Incorrect Correct Incorrect

No missing Missing No missing Missing No missing Missing No missing Missing

20

0 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) -
0.3 0.45 (0.61) - 0.00 (0.00) - 0.46 (0.58) - 0.01 (0.10) -
0.7 1.64 (0.76) - 0.02 (0.14) - 1.67 (0.84) - 0.11 (0.32) -
1.0 2.17 (0.73) - 0.04 (0.20) - 2.06 (0.68) - 0.21 (0.41) -

50

0 0.01 (0.10) - 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) -
0.3 0.81 (0.62) - 0.00 (0.00) - 0.62 (0.60) - 0.00 (0.00) -
0.7 2.17 (0.62) - 0.00 (0.00) - 2.17 (0.74) - 0.03 (0.17) -
1.0 2.65 (0.52) - 0.00 (0.00) - 2.64 (0.58) - 0.07 (0.26) -

100

0 0.01 (0.10) - 0.00 (0.00) - 0.02 (0.14) - 0.00 (0.00) -
0.3 0.99 (0.69) - 0.00 (0.00) - 1.01 (0.72) - 0.00 (0.00) -
0.7 2.39 (0.60) - 0.00 (0.00) - 2.51 (0.60) - 0.00 (0.00) -
1.0 2.76 (0.43) - 0.00 (0.00) - 2.72 (0.47) - 0.00 (0.00) -

300

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.10) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.3 1.27 (0.70) 1.27 (0.67) 0.00 (0.00) 0.00 (0.00) 1.43 (0.74) 0.97 (0.66) 0.00 (0.00) 0.00 (0.00)
0.7 2.78 (0.44) 2.66 (0.48) 0.00 (0.00) 0.00 (0.00) 2.67 (0.50) 2.58 (0.55) 0.00 (0.00) 0.00 (0.00)
1.0 2.86 (0.38) 2.83 (0.38) 0.00 (0.00) 0.00 (0.00) 2.79 (0.43) 2.67 (0.47) 0.00 (0.00) 0.00 (0.00)

500

0 0.02 (0.14) 0.03 (0.17) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.3 1.48 (0.69) 1.32 (0.57) 0.00 (0.00) 0.00 (0.00) 1.25 (0.67) 1.27 (0.63) 0.00 (0.00) 0.00 (0.00)
0.7 2.85 (0.36) 2.66 (0.50) 0.00 (0.00) 0.00 (0.00) 2.69 (0.49) 2.63 (0.51) 0.00 (0.00) 0.00 (0.00)
1.0 2.89 (0.32) 2.78 (0.42) 0.00 (0.00) 0.00 (0.00) 2.76 (0.43) 2.69 (0.49) 0.00 (0.00) 0.00 (0.00)

Table 2: Average and standard deviation (in parenthesis) of the number of correct and incorrect 0 coefficients
for W1 and W2 with hard thresholding

W1 W2
N λ Correct Incorrect Correct Incorrect

No missing missing No missing Missing No missing Missing No missing Missing

20

0 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) -
0.3 1.11 (0.78) - 0.01 (0.10) - 1.18 (0.76) - 0.04 (0.20) -
0.7 1.94 (0.65) - 0.04 (0.20) - 1.86 (0.71) - 0.17 (0.38) -
1.0 2.22 (0.71) - 0.08 (0.27) - 2.19 (0.66) - 0.17 (0.38) -

50

0 0.01 (0.10) - 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) -
0.3 1.72 (0.64) - 0.00 (0.00) - 1.69 (0.80) - 0.01 (0.10) -
0.7 2.07 (0.66) - 0.00 (0.00) - 2.23 (0.62) - 0.04 (0.20) -
1.0 2.52 (0.69) - 0.00 (0.00) - 2.51 (0.60) - 0.05 (0.22) -

100

0 0.01 (0.10) - 0.00 (0.00) - 0.02 (0.14) - 0.00 (0.00) -
0.3 1.97 (0.72) - 0.00 (0.00) - 1.96 (0.70) - 0.00 (0.00) -
0.7 2.21 (0.69) - 0.00 (0.00) - 2.27 (0.62) - 0.00 (0.00) -
1.0 2.66 (0.56) - 0.00 (0.00) - 2.63 (0.53) - 0.01 (0.10) -

300

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.10) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.3 2.14 (0.65) 2.18 (0.66) 0.00 (0.00) 0.00 (0.00) 2.06 (0.63) 1.93 (0.64) 0.00 (0.00) 0.00 (0.00)
0.7 2.37 (0.68) 2.42 (0.65) 0.00 (0.00) 0.00 (0.00) 2.32 (0.62) 2.18 (0.67) 0.00 (0.00) 0.00 (0.00)
1.0 2.76 (0.43) 2.83 (0.38) 0.00 (0.00) 0.00 (0.00) 2.72 (0.47) 2.58 (0.52) 0.00 (0.00) 0.00 (0.00)

500

0 0.02 (0.14) 0.03 (0.17) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.3 2.24 (0.65) 2.17 (0.55) 0.00 (0.00) 0.00 (0.00) 2.04 (0.71) 2.06 (0.58) 0.00 (0.00) 0.00 (0.00)
0.7 2.55 (0.67) 2.38 (0.57) 0.00 (0.00) 0.00 (0.00) 2.49 (0.60) 2.37 (0.61) 0.00 (0.00) 0.00 (0.00)
1.0 2.76 (0.43) 2.72 (0.45) 0.00 (0.00) 0.00 (0.00) 2.78 (0.42) 2.64 (0.50) 0.00 (0.00) 0.00 (0.00)



148 Chongsun Park, Morgan C. Wang, Eun Bi Mo

Table 3: Average and standard deviation (in parenthesis) of the number of correct and incorrect 0 coefficients
for W1 and W2 with smoothly clipped absolute deviation

W1 W2
N λ Correct Incorrect Correct Incorrect

No missing Missing No missing Missing No missing Missing No missing Missing

20

0 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) -
0.3 0.70 (0.70) - 0.01 (0.10) - 0.61 (0.63) - 0.02 (0.14) -
0.7 1.57 (0.78) - 0.01 (0.10) - 1.40 (0.80) - 0.107 (0.26) -
1.0 2.07 (0.73) - 0.06 (0.24) - 2.03 (0.76) - 0.19 (0.39) -

50

0 0.01 (0.10) - 0.00 (0.00) - 0.00 (0.00) - 0.00 (0.00) -
0.3 1.19 (0.72) - 0.00 (0.00) - 1.10 (0.80) - 0.01 (0.10) -
0.7 1.97 (0.73) - 0.00 (0.00) - 2.11 (0.67) - 0.04 (0.20) -
1.0 2.60 (0.60) - 0.00 (0.00) - 2.58 (0.57) - 0.04 (0.20) -

100

0 0.01 (0.10) - 0.00 (0.00) - 0.02 (0.14) - 0.00 (0.00) -
0.3 1.40 (0.71) - 0.00 (0.00) - 1.47 (0.80) - 0.00 (0.00) -
0.7 2.25 (0.73) - 0.00 (0.00) - 2.33 (0.68) - 0.00 (0.00) -
1.0 2.74 (0.44) - 0.00 (0.00) - 2.71 (0.46) - 0.00 (0.00) -

300

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.10) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.3 1.99 (0.72) 1.87 (0.71) 0.00 (0.00) 0.00 (0.00) 1.94 (0.68) 1.54 (0.77) 0.00 (0.00) 0.00 (0.00)
0.7 2.70 (0.48) 2.51 (0.60) 0.00 (0.00) 0.00 (0.00) 2.62 (0.58) 2.33 (0.60) 0.00 (0.00) 0.00 (0.00)
1.0 2.86 (0.35) 2.82 (0.39) 0.00 (0.00) 0.00 (0.00) 2.80 (0.40) 2.65 (0.50) 0.00 (0.00) 0.00 (0.00)

500

0 0.02 (0.14) 0.03 (0.17) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.3 2.13 (0.63) 2.19 (0.71) 0.00 (0.00) 0.00 (0.00) 2.04 (0.60) 1.86 (0.57) 0.00 (0.00) 0.00 (0.00)
0.7 2.84 (0.37) 2.58 (0.56) 0.00 (0.00) 0.00 (0.00) 2.62 (0.55) 2.50 (0.52) 0.00 (0.00) 0.00 (0.00)
1.0 2.79 (0.43) 2.78 (0.42) 0.00 (0.00) 0.00 (0.00) 2.76 (0.43) 2.64 (0.43) 0.00 (0.00) 0.00 (0.00)

Now let Q(W
′
, σ2′ |W, σ2) = E(log{ f (c|W′

, σ2′)}|x,W, σ2). Then the EM algorithm is obtained by
repeatedly replacing a trial estimate of (W, σ2) by those (W

′
, σ2′) maximizing

Q
(
W
′
, σ2′

∣∣∣W, σ2
)
− Pλ

(
W
′)
,

with Pλ(W
′
) = N

∑p
i=1

∑q
j=1 pλ(w

′

i j).

4.1. E-step

E-step takes the expectation of lx,c with respect to the distribution f (cn|xn,W, σ2):

⟨lx,c⟩ = −
N∑

n=1

{
p
2

ln σ2 +
1
2

tr
(⟨

cncT
n

⟩)
+

1
2σ2 (xn − µ)T (xn − µ)

− 1
σ2 ⟨cn⟩T WT (xn − µ) +

1
2σ2 tr

(
WT W

⟨
cncT

n

⟩)}
,

where we have omitted terms independent of the model parameters and

⟨cn⟩ = M−1WT (xn − µ),⟨
cncT

n

⟩
= σ2 M−1 + ⟨cn⟩⟨cn⟩T ,

in which M =WT W + σ2I as before.
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(e) N = 300 with 20% missing
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(g) N = 500 with 20% missing

Figure 1: Angles between true and estimated 1st component. From the left to the right in each boxplot: λ = 0
with no penalty (1), λ = 0.3 for L1 (2) · HARD (3) · SCAD (4), λ = 0.7 for L1 (5) · HARD (6) · SCAD (7),
λ = 1.0 for L1 (8) · HARD (9) · SCAD (10) [Plot numbers are in (·).]. HARD = hard thresholding; SCAD =

smoothly clipped absolute deviation.
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4.2. M-step

In M-step ⟨lx,c⟩ − Pλ(W) is maximized with respect to W and σ2. First, the optimal estimate W̃ for W
can be obtained by solving

∂Q
(
W
′
, σ2′

∣∣∣W, σ2
)

∂W′ −
∂Pλ

(
W
′)

∂W′ = 0

and it becomes

∂Q
(
W
′
, σ2′

∣∣∣W, σ2
)

∂W′ −
∂Pλ

(
W
′)

∂W′

=

N∑
n=1

{
1
σ2′ (xn − µ)⟨cn⟩T −

1
σ2′ W

⟨
cncT

n

⟩}
−
∂Pλ

(
W
′)

∂W′

= 0 (4.1)

We need to solve equation (4.1) to estimate optimal solution for the W̃. As an example, for a L1
penalty function, it would be

Ŵ =

 N∑
n=1

(xn − µ)⟨cn⟩T − σ2′λN1p×q

(
sgn

(
w′i j

))
 N∑

n=1

⟨
cncT

n

⟩−1

=
[
SW M−T − σ2′λ1p×q

(
sgn

(
w′i j

))] [
σ2′M−1 + M−1WT SW M−T

]−1
.

However, for HARD and SCAD penalty functions that include some or all terms of w′i j from W
′
, we

need to use an iterative algorithm to find an optimal W
′
. Since it is not practical to find the information

matrix with respect to W, we should use an optimization method that only uses the first derivatives. A
steepest descent algorithm using line search would be one possible choice from several well-known
algorithms. We used “nlminb” function in R for our line search procedure.

Second, the estimate for σ2 can be calculated as

σ̂2 =
1

N p

∑{
||xn − µ||2 − 2⟨cn⟩T W̃

T
(xn − µ) + tr

(⟨
cncT

n

⟩
W̃

T
W̃

)}
=

1
p

tr
(
S − SW M−1W̃

T
)
.

Finally, E- and M-steps are iterated in sequence until the algorithm is judged to have converged.
We conclude the proposed algorithm for PenPPCA by mentioning appropriate initial values for W

and ways to find an optimal λ.

• Initial W: Coefficient estimates from PCA would be reasonable initial values for W’s and for each
subsequent component in the PenPPCA.

• Optimal λ: For an optimal λ generalized or usual CV techniques may be used as suggested by
Breiman (1995), Fu (1998), and Tibshirani (1996).



Penalized probabilistic PCA 151

5. Numerical comparisons

This section tests the accuracy of the proposed approach and compare the performance of our method
with existing ones. In the first small simulation study, we reported the number of true and false zeroes
and angles between true and estimated component for 100 replicated simulated data sets with 20%
and without missing values. Numerical comparison of our newly proposed method with simplified
component technique-LASSO (ScoTLASS) (Jolliffe et al., 2003) is included in the second real data
example. All numerical comparisons are conducted using R codes.

5.1. Small simulation study

For any given vector of positive real numbers and an orthogonal matrix, we can find a covariance
matrix whose eigenvalues are the elements of a given vector, and whose eigenvectors are the columns
of a given matrix. The data sets for the study are simulated as follows. This is based on the observation
that x is marginally distributed as normal with mean µ and covariance matrixΨ=WWT +σ2I. Further
we can set µ to zero without loss of generality. The following sets of data are generated 100 times for
each combination.

• N: Number of observations is considered are 20, 50, 100, 300, 500.

• p: Number of variables is fixed at 5.

• µ: Mean vector of x is set to 0 without loss of generality.

• Eigenvectors of

Ψ =


0.95 0 −0.27 0.15 −0.07

0 0.95 0.16 0.24 −0.10
0.32 0 0.81 −0.44 0.22

0 −0.32 0.49 0.73 −0.36
0 0 0 0.45 0.90


(Eigenvectors are columns of the matrix and the last three vectors are selected with no special
purpose.).

• Eigenvalues of Ψ are (2.5, 1.5, 0.4, 0.3, 0.3)T .

We compare the first two components associated with the largest and the second largest eigen-
values for assessing behavior of the proposed PenPPCA. We look at estimated directions and their
standardized values for comparison with true W and σ2. The average number of zero estimates for
true zero (correct) coefficients for each case, and zero estimates for non-zero coefficients (incorrect)
are of particular concern. We included the results of only four preset λs of 0 (no penalty), 0.3, 0.7 and
1.0 in Table 1 through Table 3 with L1, HARD, and SCAD penalty, respectively. In addition, boxplots
of angle between true and estimated 1st component were also reported.

The results show that the number of true zeros increases as n increases and is bigger when the λ
is 1 than other three cases. Most of the estimates for true non-zero coefficients are also different from
zero when the number of observation is larger than 100. We can therefore say that, with a relatively
large number of observations and an appropriate λ our method effectively forces estimates of true zero
to zero and at the same time seldom gives zero estimates for true non-zero coefficients regardless of
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Table 4: Descriptions for 13 variables measured

Variable Description
x1 The top diameter in inches
x2 The length in inches
x3 The moisture content, % of dry weight
x4 The specific gravity at the time of the test
x5 The oven-dry specific gravity
x6 The number of annual rings at the top
x7 The number of annual rings at the base
x8 The maximum bow in inches
x9 The distance of the point of maximum bow from the top in inches
x10 The number of knot whorls
x11 The length of clear prop from the top in inches
x12 The average number of knots per whorl
x13 The average diameter of the knots in inches

penalty functions used. For each fixed n, the number of correct 0 coefficients tends to converge to 3
for a range of λ values until one variables dominates with coefficient estimate (after standardizing) 1.

From boxplots in Figure 1, HARD penalty function have smallest bias in most of the cases and
standard deviations are also relatively smaller than other penalty functions. However, there seems to
have no big difference between cases with and without missing observations.

5.2. A real example

We considered the pitprop data set, introduced by Jeffers (1967), in which a PCA was conducted on
the correlation matrix of 13 measurements made on a sample size of 180 pitprops cut from Corsican
pine timber from East Anglia. Descriptions for variables measured are included in Table 4.

In this example, we numerically compare the proposed method with LASSO approach in PCA
(ScoTLASS) for several values of tuning parameters. We tried three values of 0.5, 1, and 1.5 for
tuning parameter λ and found that there seems to be too many 0 estimates with λ of 1.5 compared to
the results of ScoTLASS, in which they reported results of t = 1.75 and t = 2.25. Variables with 0
coefficients for λs of 0.5 and 1.0 for our method together with the results of Jolliffe et al. (2003) are
reported in Table 5.

Overall, variables with 0 estimates are quite different between PenPPCA and ScoTLASS in 5 com-
ponents except in the 1st one. In the first component, variables x1, x2, x7, x8, x9, and x10 are relevant
in both methods. Variables of 0 estimates vary with tuning parameter t in ScoTLASS. Conversely, the
proposed method is consistent in that variables with 0 estimates for tuning parameter λ = 0.5 become
0 for larger λ values with new variables added with 0 estimates.

It is interesting to note that ScoTLASS looks like giving fewer 0 estimates for components as its
variance becomes smaller. In the 6th component only one estimate is 0 for variable x10 in all values of
t.

6. Discussions

We proposed a variable selection method in PCA via penalized likelihood approaches. From the fam-
ily of penalty functions HARD seems to be the best in preserving original direction of coefficients
for each principal component with root-n consistency and sparsity. The orthonormality of estimates
for components are not guaranteed; however, we could apply the Gram-Schmidt method to obtain
orthonormal components as in usual PCA if required. However, we found that orthonormalized direc-
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Table 5: Coefficients of 0 estimates for several methods

Component Method Variable
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1

ScoTLASS (t = 1.75)
√ √ √ √ √ √ √

ScoTLASS (t = 2.25)
√ √ √ √ √ √

PenPPCA (λ = 0.50)
√

PenPPCA (λ = 1.00)
√ √ √ √

2

ScoTLASS (t = 1.75)
√ √ √ √ √ √ √

ScoTLASS (t = 2.25)
√ √ √

PenPPCA (λ = 0.50)
√ √ √ √

PenPPCA (λ = 1.00)
√ √ √ √ √ √

3

ScoTLASS (t = 1.75)
√ √ √ √ √ √ √

ScoTLASS (t = 2.25)
√ √ √ √ √

PenPPCA (λ = 0.50)
√ √ √ √ √ √ √

PenPPCA (λ = 1.00)
√ √ √ √ √ √ √ √ √

4

ScoTLASS (t = 1.75)
√ √ √ √ √ √ √

ScoTLASS (t = 2.25)
√ √ √

PenPPCA (λ = 0.50)
√ √ √

PenPPCA (λ = 1.00)
√ √ √ √ √ √ √

5

ScoTLASS (t = 1.75)
√ √ √

ScoTLASS (t = 2.25)
PenPPCA (λ = 0.50)

√ √ √ √

PenPPCA (λ = 1.00)
√ √ √ √ √ √ √ √ √ √

6

ScoTLASS (t = 1.75)
ScoTLASS (t = 2.25)

√

PenPPCA (λ = 0.50)
√ √ √ √

PenPPCA (λ = 1.00)
√ √ √ √ √ √ √ √

ScoTLASS = simplified component technique-least absolute shrinkage and selection operator; PenPPCA = penalized proba-
bilistic principal component analysis.

tions seem to be very close to those from the usual PCA algorithm in most cases.
The number of relevant components could be decided from estimates of σ2(p − q). Those values

are quite close to the sum of eigenvalues for components not included in the first q components.
Theoretical asymptotic tests for deciding the number of relevant components are under consideration.
Clearly estimates of σ2(p − q) can be used to get an idea on the amount of variance explained by the
first p components. The further asymptotic normality of estimates is straightforward; however, they
are not included, since they are not frequently mentioned in standard PCA.

The proposed method can be successfully applied to high-dimensional PCA problems with a rel-
atively large portion of irrelevant variables included in the data set. It is straightforward to extend our
likelihood method in handling problems with missing observations using EM algorithms.
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