• Title/Summary/Keyword: principle component analysis (PCA)

Search Result 182, Processing Time 0.04 seconds

Improving Estimation Ability of Software Development Effort Using Principle Component Analysis (주성분분석을 이용한 소프트웨어 개발노력 추정능력 향상)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Putnam develops SLIM (Software LIfecycle Management) model based upon the assumption that the manpower utilization during software project development is followed by a Rayleigh distribution. To obtain the manpower distribution, we have to be estimate the total development effort and difficulty ratio parameter. We need a way to accurately estimate these parameters early in the requirements and specification phase before investment decisions have to be made. Statistical tests show that system attributes are highly correlation (redundant) so that Putnam discards one and get a parameter estimator from the other attributes. But, different statistical method has different system attributes and presents different performance. To select the principle system attributes, this paper uses the principle component analysis (PCA) instead of Putnam's method. The PCA's results improve a 9.85 percent performance more than the Putnam's result. Also, this model seems to be simple and easily realize.

Recognition of Numeric Characters in License Plate based on Independent Component Analysis (독립성분 분석을 이용한 번호판 숫자 인식)

  • Jeong, Byeong-Jun;Kang, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This paper presents an enhanced hybrid model based on Independent Component Analysis(ICA) in order to features of numeric characters in license plates. ICA which is used only in high dimensional statistical features doesn't consider statistical features in low dimension and correlation between numeric characters. To overcome the drawbacks of ICA, we propose an improved ICA with the hybrid model using both Principle Component Analysis(PCA) and Linear Discriminant Analysis(LDA). Experiment results show that the proposed model has a superior performance in feature extraction and recognition compared with ICA only as well as other hybrid models.

PCA-Based Feature Reduction for Depth Estimation (깊이 추정을 위한 PCA기반의 특징 축소)

  • Shin, Sung-Sik;Gwun, Ou-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.29-35
    • /
    • 2010
  • This paper discusses a method that can enhance the exactness of depth estimation of an image by PCA(Principle Component Analysis) based on feature reduction through learning algorithm. In estimation of the depth of an image, hyphen such as energy of pixels and gradient of them are found, those selves and their relationship are used for depth estimation. In such a case, many features are obtained by various filter operations. If all of the obtained features are equally used without considering their contribution for depth estimation, The efficiency of depth estimation goes down. This paper proposes a method that can enhance the exactness of depth estimation of an image and its processing speed is considered as the contribution factor through PCA. The experiment shows that the proposed method(30% of an feature vector) is more exact(average 0.4%, maximum 2.5%) than using all of an image data in depth estimation.

Face Detection using PCA-LDA and Color Information (색상정보와 PCA-LDA를 이용한 얼굴검출)

  • Lee, Ju-Seung;Han, Young-Hwan;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.72-79
    • /
    • 2002
  • This paper presents an efficient face detection algorithm for color images with a complex background. The presented algorithm utilizes the color information and eigenface that is calculated by PCA-LDA (Principle Component Analysis - Linear Discriminant Analysis). The method of using the color information is faster than any other methods. Eigenface includes average information of the whole test faces. Therefore eigenface can decide that the candidate region is a face. The whole process is composed of two steps. First, it finds first face candidates region of skin tone using a color information in image. We can get a size and position of face candidate region. Second, we compare first face candidate region with eigenface, so decide that an image whether include a face or not. The advantages of the proposed approach include that increasing the detection speed by deciding a size and position of first face candidates region. Also, Betting 97% of the detection rate by comparing the eigenfaces calculated in PCA-LDA.

  • PDF

Monitoring of Recycling Treatment System for Piggery Slurry Using Neural Networks (신경회로망을 이용한 순환식 돈분처리 시스템의 모니터링)

  • Sohn, Jun-Il;Lee, Min-Ho;Choi, Jung-Hea;Koh, Sung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.127-133
    • /
    • 2000
  • We propose a novel monitoring system for a recycling piggery slurry treatment system through neural networks. Here we tried to model treatment process for each tank(influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) in the system based on population densities of heterotrophic and lactic acid bacteria. Principle component analysis(PCA) was first applied to identify a relation between input(microbial densities and parameters for the treatment) and output, and then multilayer neural networks were employed to model the treatment process for each tank. PCA filtration of input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of input. Neural networks independently trained for each treatment tank and their subsequent combinatorial data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Robot Gesture Reconition System based on PCA algorithm (PCA 알고리즘 기반의 로봇 제스처 인식 시스템)

  • Youk, Yui-Su;Kim, Seung-Young;Kim, Sung-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.400-402
    • /
    • 2008
  • The human-computer interaction technology (HCI) that has played an important role in the exchange of information between human being and computer belongs to a key field for information technology. Recently, control studies through which robots and control devices are controlled by using the movements of a person's body or hands without using conventional input devices such as keyboard and mouse, have been going only in diverse aspects, and their importance has been steadily increasing. This study is proposing a recognition method of user's gestures by applying measurements from an acceleration sensor to the PCA algorithm.

  • PDF

The Detection of Yellow Sand Using MTSAT-1R Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.236-238
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-functional Transport Satellite-1 Replacement (MTSAT-1R) data. The algorithm is the hybrid algorithm that has used two methods combined together. The first method used the differential absorption in brightness temperature difference between $11{\mu}m$ and $12{\mu}m$ (BTD1). The radiation at 11 ${\mu}m$ is absorbed more than at 12 ${\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m$ and $11{\mu}m$ (BTD2). The technique would be most sensitive to dust loading during the day when the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. We have applied the three methods to MTSAT-1R for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. As produced Principle Component Image (PCI) through the PCA is the correlation between BTD1 and BTD2, errors of about 10% that have a low correlation are eliminated for aerosol detection. For the region of aerosol detection, aerosol index (AI) is produced to the scale of BTD1 and BTD2 values over land and ocean respectively. AI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between AI and OMI aerosol index (AI) shows remarkable good correlations during daytime and relatively good correlations over the land.

  • PDF

Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload

  • Kakavand, Mohsen;Mustapha, Norwati;Mustapha, Aida;Abdullah, Mohd Taufik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3884-3910
    • /
    • 2016
  • Intrusion Detection System (IDS) in general considers a big amount of data that are highly redundant and irrelevant. This trait causes slow instruction, assessment procedures, high resource consumption and poor detection rate. Due to their expensive computational requirements during both training and detection, IDSs are mostly ineffective for real-time anomaly detection. This paper proposes a dimensionality reduction technique that is able to enhance the performance of IDSs up to constant time O(1) based on the Principle Component Analysis (PCA). Furthermore, the present study offers a feature selection approach for identifying major components in real time. The PCA algorithm transforms high-dimensional feature vectors into a low-dimensional feature space, which is used to determine the optimum volume of factors. The proposed approach was assessed using HTTP packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome demonstrated that our proposed anomaly detection achieved promising results with 97% detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection also achieved comparable performance in terms of computational complexity when compared to three state-of-the-art anomaly detection systems.

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

  • Yu, XinYang;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.

Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • Kim, Sung-Suk;Lee, Dae-Jeong;Park, Jang-Hwan;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.878-882
    • /
    • 2004
  • In this paper, we propose a hierarchical hybrid neural network for detecting faults of induction motor. Implementing the classifier based on the input and output data, we apply appropriate transform and classification method at each step. In the proposed method, after obtaining the current of state of motor for each period, we transform it by Principle Component Analysis(PCA) to reduce its dimension. Before the training process, we use the conditional Fuzzy C-means(FCM) for obtaining the initial parameters of neural network for more effective learning procedure. From the various simulations, we find that the proposed method shows better performance to detect and diagnosis of induction motor and compare than other methods.