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Abstract

Motor imagery classification in electroencephalography (EEG)-based brain–computer interface
(BCI) systems is an important research area. To simplify the complexity of the classification,
selected power bands and electrode channels have been widely used to extract and select
features from raw EEG signals, but there is still a loss in classification accuracy in the state-
of-the-art approaches. To solve this problem, we propose a discriminative feature extraction
algorithm based on power bands with principle component analysis (PCA). First, the raw EEG
signals from the motor cortex area were filtered using a bandpass filter with µ and β bands.
This research considered the power bands within a 0.4 second epoch to select the optimal
feature space region. Next, the total feature dimensions were reduced by PCA and transformed
into a final feature vector set. The selected features were classified by applying a support
vector machine (SVM). The proposed method was compared with a state-of-art power band
feature and shown to improve classification accuracy.
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1. Introduction

A brain–computer interface (BCI) is a non-muscular communication system that people can
use to directly communicate their intentions from their brains to the environment [1, 2].
The BCI system attaches a function to brain signals, thereby creating a new communication
channel between the brain and external devices. This communication method is partially
focused on the brain signal features extracted by the BCI system for device control and
provides mutual interaction between the user and the system. Using different sensors and
brain signals, many studies over the past two decades have evaluated the possibility that
BCI systems could provide new augmentative technology without muscle control [3-8]. BCI
systems have measured specific features of brain activity and translated them into device
control commands. For example, an arbitrary limb movement changes the brain activity, such
as electroencephalography (EEG), in the related cortex. In fact, even preparing to move and
imaging a movement changes the so-called sensory rhythms. We can record α rhythm activity
from sensorimotor areas, also called µ rhythm activity.

The decrease of oscillatory activity in a specific frequency band is called event-related
desynchronization (ERD). Correspondingly, the increase of oscillatory activity in a specific
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frequency band is called event-related synchronization (ERS).
The ERD/ERS patterns can be volitionally produced by motor
imagery, which is the process of imagining the movement of
a limb without actual movement [9]. In general, EEGs are
recorded over primary sensorimotor cortical areas that often
display 8–12 Hz (µ rhythm) and 18–26 Hz (β rhythm) activ-
ity. Several researchers have shown that people can learn to
control the amplitude of µ/β rhythms in the absence of actual
movement or sensation. Because µ/β rhythm changes are asso-
ciated with normal motor/sensory function, they could be good
signal features for BCI-based communication. Movement or
preparation for movement, but typically not specific aspects of
a movement such as its direction [10], are typically accompa-
nied by a decrease in µ and β activity over the sensorimotor
cortex, particularly contralateral to the movement. Furthermore,
the changes in µ/β rhythms also occur with motor imagery.
Because people can change these rhythms without engaging in
actual movements, these rhythms could serve as the basis for a
BCI system. To improve classification accuracy, in this study,
a stochastic analysis-based method is employed for optimal
feature selection and a linear regression classifier is applied.

This paper is organized as follows. In Section 2, we briefly
describe related works for discriminant power feature selection,
such as Laplacian spatial filter and principal component analysis
(PCA). We explain the discriminant power feature selection
method and motor imagery pattern classification method in
Section 3. A motor imagery EEG classification experiment is
introduced and the results are discussed in Section 4. Finally,
in Section 5, we conclude this paper and suggest future works
for improving our work.

2. Related Works

2.1 Laplacian Spatial Filter

General EEG signal analysis in BCI systems consists of three
major parts: preprocessing, feature extraction, and classification
of the EEG mental tasks. In this study, the proposed method
focuses on the feature extraction step. The initial procedure in
feature extraction employs a spatial filter. The purpose of using
a spatial filter is to reduce the effect of spatial blurring from
the raw signals. Spatial blurring is an effect of the distance
between the sensor and the signal sources in the brain and is
caused by the inhomogeneities of the tissues between the brain
areas. Several spatial filtering approaches have attempted to
increase system fidelity. The most typical realization is a Lapla-

cian filter, which consists of discretized approximations of the
second-order spatial derivative of the two-dimensional Gaussian
distribution on the scalp surface. A Laplacian filter attempts
to invert the process that blurs the brain activities detected on
the scalp. The approximations can be further simplified. For
example, at each time point t, the weighted sum of the potential
Si of the four nearest or next-nearest electrodes are subtracted
from the potential Sh at a center electrode for the small and
large Laplacian, respectively.

Ṡh(t) = Sh(t)−
∑
i∈Si

ωhiSi(t) (1)

Eq. (1) shows a description of the Laplacian filter. Sh and
Ṡh are the input and output of the EEG signal, respectively,
corresponding to electrode h. Si is the set of neighbor elec-
trodes surrounding electrode h. Weight whi is a function of the
distance between the electrode of interest h and its neighbor i,
dhi.

whi =
1/dhi∑

i∈Si
1/dhi

(2)

whiis the constant weight of the signal from electrode i of
Sh, which could be calculated from Eq. (2), where dhi is the
Euclidean distance from electrode i to h. In practice, this filter
is often implemented by simply subtracting the average of the
four next-nearest neighbors (i.e., the weight for each neighbor
is 0.25).

The main purpose of the spatial filter is to derive a more
faithful representation of the sources within the brain and/or
to remove the influence of the reference electrode from the
signal. The influence is sensitive to the Laplacian mapping
size as shown in Figure 1. In Figure 1 (a) and (b), the red and
black dots indicate the location of the reference electrode and
its spatial filter, respectively.

2.2 FIR Filter and Hamming Window

As described earlier, motor imagery has been shown to produce
changes in the µ and β frequency band. EEG signals are filtered
using a band pass filter, i.e., an finite impulse response (FIR)
filter with a Hamming window for extracting the motor imagery-
related frequency bands (7–15 Hz and 18–22 Hz).

Figure 2 (a) shows raw EEG signals without the FIR filtering
and Hamming window processing, while Figure 2 (b) shows
the result of a filtered EEG signal by FIR filter.

The power bands are calculated from all electrodes of the
extracted EEG with an epoch time of 1 second and a 0.5 second
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(a) (b)

Figure 1. Spatial filters with different sized Laplacian sketch maps.
(a) A small size of Laplacian mapping and (b) a large size of Laplacian
mapping size.

(a) (b)

Figure 2. Finite impulse response (FIR) filtering with a Hamming
window of a motor imagery electroencephalography (EEG) signal:
(a) a raw EEG signal and (b) an EEG signal filtered by FIR with a
Hamming window.

delay from each epoch out of 4 second, during which human
subjects start imagining a motor task (such as left/right hand or
foot movement) and then finish it. We used 20% of the dataset
as the testing set. The remaining 64% and 16% of the dataset
were alternately used for training and validation.

2.3 Principal Component Analysis (PCA)

Real-world data is often noisy because various signals from
different perspectives are recorded and information is hidden in
a few dimensions. PCA is a classical statistical method used to
re-express the noisy data in a different framework. This linear
transform has been widely used in data analysis and compres-
sion. PCA is based on the statistical representation of a random
variable. Suppose that we have a random vector population,

−→
X ,

where
−→
X = (x1,x2 . . . . . .xn)

T , xn= [x1, x2, . . . ,xm], and
the population mean is denoted by −→u X = E(

−→
X ). Mean sub-

traction from each data dimension is necessary for performing
PCA to ensure that the first principal component describes the
direction of maximum variance. If mean subtraction is not per-

formed, the first principal component might instead correspond
more or less to the mean of the data. A mean of zero is needed
to find a basis that minimizes the mean square error (MSE) of
the approximation of the data. The singular value decomposi-

tion (SVD) of
−→
X is

−→
X =
−→
WXΣ

−→
V

T

X , where the m×m matrix
−→
WX is a matrix of the eigenvectors of the covariance matrix

E[(
−→
X −−→u X)(

−→
X −−→u X)

T
], matrix Σ is anm×n rectangular

diagonal matrix with nonnegative real numbers on the diagonal,
and the n × n matrix

−→
V X is a matrix of the eigenvectors of

the covariance matrix E[(
−→
X −−→u X)

T
(
−→
X −−→u X)]. Under this

condition, the principal component
−→
A of a dataset

−→
X can be

defined as

~A = arg max
‖ ~W‖=1

V AR{ ~WT ~X} = arg max
‖ ~W‖=1

E{( ~WT ~X)2} (3)

With the first N − 1 components, the N th component can
be defined by subtracting the first N − 1 principal components
from ~X as shown in Eq. (4):

~XN−1 = ~X −
N−1∑
i=1

~Wi
~WT

i
~X (4)

We can achieve our goal of decorrelating the original dataset
and reducing its dimension. Many methods exist for solving
eigenvalues and corresponding eigenvectors, which is a non-
trivial task. By ordering the eigenvectors in a descending or-
der, we can create an ordered orthogonal basis with the first
eigenvector (corresponding to the largest eigenvalue) having
the direction of the largest variance of the data. In this way, we
can find directions in which the dataset has the most significant
amount among the multiple dimensions.

Our goal is to find a new matrix
−→
Y , which is a dimensionality-

reduced random variable dataset, such that the covariance ma-
trix
−→
C Y =E[

−→
Y
−→
Y

T
],
−→
C Y is a diagonal matrix, and each suc-

cessive dimension in
−→
Y is rank-ordered according to variance

from the
−→
C Y . Now, PCA allows us to find

−→
Y . It assumes an

orthogonal matrix that acts as a transition matrix or function, as
in
−→
Y =

−→
A
−→
X .

3. Discriminant Power Feature Selection Using
PCA and Classification Using Support Vec-
tor Machine
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3.1 Discriminant Power Feature Selection using PCA

In this study, the motor imagery EEG signals are represented as
−→
X , which were segmented from 1 second before the cue onset

and 4 seconds after the cue onset of raw EEG signals for a total
5 seconds long time interval from 59 channels. The raw signals
were sampled at 100 Hz, and they were spatially bandpass-
filtered at 7–15 Hz and 18–22 Hz. We calculated a set of data
that consists of a sample mean of

−→
X , −→uX , and a covariance

matrix of
−→
X ,
−→
CX for each motor imagery state: {left/right

hand, foot movement}. For PCA to work properly, we sub-
tracted −→uX from each data dimension in

−→
X . This produced a

dataset with a mean that is equal to zero.
Let
−→
A be a transition matrix that consists of eigenvectors of

the covariance matrix as the row vectors. It is applied to reduce
the dimensionality of

−→
X as shown in

−→
Y =

−→
A
−→
X . Our goal is

to find a matrix
−→
A . The rows of

−→
A are the principal components

of
−→
X . Now, combining all the above information, we have

−→
CY = E[

−→
Y
−→
Y

T
]=
−→
A (
−→
CX)
−→
A

T
(5)

If
−→
CX is orthogonally diagonalizable, it can be applied to

the SVD such that
−→
CX =

−→
E
−→
D
−→
E

T
, where

−→
D is a diagonal

matrix and
−→
E is an orthogonal eigenvector that is diagonal to

the symmetric matrix
−→
CX . Then, the ith column of

−→
E is the

ith eigenvector of
−→
CX . Therefore, we can rewrite Eq. (5) as

−→
CY =

−→
A (
−→
CX)
−→
A

T
=
−→
A (
−→
E
−→
D
−→
E

T
)
−→
A

T
(6)

In this case,
−→
A =

−→
E

T
, so that

−→
CY =

−→
A
(−→
CX

)−→
A

T
=
−→
A

(
−→
A

T−→
D
−→
E

T
)
−→
A =

−→
D (7)

By setting the principal components
−→
A equal to the eigen-

vectors
−→
CX , we can achieve dimensionality reduction.

The original vector
−→
X was projected on the coordinate axes

defined by the orthogonal basis. It was then reconstructed by
a linear combination of the orthogonal basis vectors. Instead
of using all the eigenvectors of the covariance matrix, we may
represent the data in terms of only a few basis vectors of the
orthogonal basis. If we denote the matrix having K first eigen-
vectors as rows by

−→
A K , we can create a similar transformation.

This means that we project the original data vector on the co-
ordinate axes having dimension K and transform the vector by
a linear combination of the basis vectors. This minimizes the

MSE between the data and this representation with the given
number of eigenvectors.

In this study, PCA was applied to reduce the dimensionality
of the transformation matrix of the training set to

−→
A k, which

is used to calculate the final feature using Eq. (8), where the
transposed matrix of

−→
A k has a dimension of k ×N :

−→
Y ′ =

−→
A k
−→
X (8)

The output feature
−→
Y ′ is reduced to the k dimension (k ≤ N ),

which is determined by varying the number of k from 1 to N
according to the arranged variance of the PCA in descending
order of the training set to find the best model. The model
that generates the best classification accuracy using a support
vector machine (SVM) on the validation set is selected as the
final model for the feature reduction method and applied to the
testing set to test the proposed method.

3.2 Classification of Discriminant Power Feature Using
SVM

The classification of the discriminant power feature is the most
important step in analyzing motor imagery EEG signals. After
we selected the optimal features as described in the previous
section, we calculated the Euclidean distances between the
motor imagery classes {left/right hand, foot movement} to
apply them using a SVM.

In this study, the SVM algorithm is used by receiving input
data during a training phase and shown good performance in
classification phase. Thus, we built a classifier that could have
been used to predict future data [11-13]. By using the SVM
with dimensionality reduction, the system shows improved clas-
sification accuracy compared with previous approaches. To
employ an SVM to classify the discriminant power feature of
motor imagery EEGs, we must consider the following.

Given two-class training samples,
−→
S= {s1, s2, . . . ,sl} , si =

(xi, yi) , xi ∈ Rm (xi is the feature vector and m denotes the
dimensionality of input space) and yi ∈ {1,−1} denotes the
class label of xi. In the SVM training procedure, the optimal
hyperplane has to be found, which can maximize the margin
that separates the two-class samples. To minimize the problem,
a convex quadratic program (QP) is commonly used.

We determined the Lagrange multipliers{αi}li=1 that maxi-
mize the objective function, f (x):
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ω1 (−→α ) =

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj) (9)

l∑
i=1

αiyi = 0, 0≤ αi ≤ C (10)

where C is a positive constant specified by the user and K is
a kernel function. In this study, we applied a Gaussian kernel
function:

K (xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
(11)

where σ is a constant specified by the user.
From Eq. (9), we can see that the size of the QP problem is

equal to the number of training samples. SVMs are usually slow,
especially for a large problem. Solving the above Lagrange
multiplier, we can obtain the below decision function:

f (x) =

l∑
i=1

αi
∗yiK (xi, x) + b (12)

where b is a bias.
From Eq. (10), we know that 0≤ αi

∗ ≤ C holds for i =

1, 2, . . . , l. All the training samples are support vectors (SVs),
and they correspond to αi

∗ > 0. Let αi
∗ > 0 for i = lsv +

1, lsv + 2, . . . , l. Thus, Eq. (12) could be rewritten as

f (x) =

lsv∑
i=1

αi
∗yiK (xi, x) + b (13)

4. BCI Experiment for Motor Imagery EEG
Classification

In this study, we used the BCI competition III-dataset IVa in
which five subjects (aa, al, av, aw, and ay) imagined a right
hand and foot movement. We also used the BCI competition IV
dataset I, which involved four subjects (a, b, f, and g); two of
them imagined a right and left hand movement, and two others
imagined a left hand movement and foot movement. BCI III
contained 280 trials for each subject, and BCI IV contained 200
trials for each subject. All the datasets were normalized to 59
electrodes, and the epoch time was selected from 0–4 seconds,
for which the stimuli was given to subjects at 0 second. The
raw signals were segmented from 1 second before the cue onset
(0 second) and 4 second after the cue onset, so in total, they

Figure 3. Flowchart of discriminant power feature selection and
motor imagery EEG classification. EEG, electroencephalography;
PCA, principle component analysis; SVM, support vector machine.

Table 1. Experimental results of model selection for each subject
with its best classification accuracy

Subject K Accuracy (%)

aa 32 75.00

Al 222 70.45

aw 33 65.91

av 2 61.36

ay 90 61.36

A 60 87.50

B 144 68.75

F 50 84.38

G 111 90.63

included 5 second long time intervals from 59 channels. As
the result, the power feature of the original signal

−→
X can be

regarded to have a dimension of [59 × 2 × 7].

Figure 3 illustrates the generalized process for discriminant
feature selection with K dimensions and discrimination of the
states of motor imagery EEGs. The original power features of
−→
X have a dimension of [59 × 2 × 7], so we have to find the
dimensionality-reduced discriminant feature vector from them.
K is the dimension of the discriminant feature vector for a new
power orthogonal basis, so K is the dimension of the principal
component of −→x .

Table 1 shows the results of model selection of each sub-
ject with its best classification accuracy on the validation set.
Because of individual differences, every subject has a differ-
ent value of K. Thus, K is the number of components. In this
case, we determine the accuracy rate of classification, pacc, as
follows:

pacc =

(
1− 1

K

K∑
i=1

MSE

)
× 100 (14)

For example, when subject aa has K = 32 based on the pro-
posed discriminative feature extraction method, pacc is 75%.
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Figure 4. Experimental results of accuracy rate compared with previ-
ous approaches (type 1, type 2).

This means the 32nd dimension contains 75% of the total fea-
tures. We can see that the EEGs are subject-dependent, and
the value of K needed for each subject to obtain its best per-
formance is naturally different for each subject. To compare
the performance of our method with that of other approaches,
we simulated state-of-art methods using the EEG feature ex-
traction algorithm. First, we call type 1 the band power where
all channels are the same, meaning all electrodes with average
power have a 4s epoch. Type 2 is the method of extracting the
band power feature based on the selected channels (C3,C4, Cz),
which are related to motor imagery neuroscience studies.

As shown in Figure 4, the proposed method outperformed the
other methods. In case of type 1, it outperformed for subjects
av, aw, ay, a, and f, and in the case of type 2, it outperformed for
subjects al, ay, b, and g. The proposed method outperformed
both the type 1 and type 2 methods.

5. Conclusion

To simplify the complexity of motor imagery EEG analysis
in BCI systems, we proposed a discriminant feature selection
method for motor imagery using an EEG-based BCI system.
The proposed method is based on PCA and SVM. By applying
PCA, we can successfully achieve our goal for discriminant
feature selection, which is to decorrelate the original dataset
of motor imagery EEGs and reduce its dimensionality while
maintaining the discriminants. The selected features are in the
form of a final feature vector set that we apply using a SVM
as a classifier. By comparing the proposed method to previous
methods, we found that the proposed method enhanced the
availability of features up to 8% for each subject.

In the future, we will investigate other approaches for opti-
mal feature selection without loss of performance. Although
the proposed method improved the classification progress, the
accuracy of the classification did not reach our goal. To improve
the overall classification performance, we will study non-linear
dynamical analysis approaches instead of stochastic analysis
for brain signals.
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