• Title/Summary/Keyword: prime process

Search Result 244, Processing Time 0.03 seconds

An Analytical Study on Studies of Creativity Education in Korea: Focusing on Categories and Levels of Creativity (국내 창의성 교육 연구 동향분석: 창의성의 범주 및 수준을 중심으로)

  • Cho, Youn-Soon;Jeong, Ji-Eun
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.2
    • /
    • pp.333-352
    • /
    • 2012
  • Creativity has been suggested as a prime educational objective by national curriculum of Korea and research on creativity education has been increased since 2000s. How the researcher conceptualizes and approaches creativity affects the research. The purpose of this study is to explore directions of creativity research in education by analyzing its approach based on its categories and levels of creativity. The results of the study shows the following: (1)studies with a definition of creativity are more than without it but the former has been decreasing and the latter increasing little by little. (2)Studies which focus on person, cognitive or emotional characteristics, are the most. And process, environment, and product follow. (3)Regarding the levels of creativity, most was done on little-c creativity level, on the other hand, very limited studies conceptualized the creativity in educational context. Studies having an interest in mini-c creativity level were hardly found.

An Analysis of Using TI-73 Calculator for the 5th Grade Students in an Elementary Math Gifted Class (TI-73 계산기를 활용한 초등 5학년 수학 영재 학급의 수업 분석)

  • Kang, Young Ran
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.315-331
    • /
    • 2013
  • In this study, lessons on coordinate, percentage, and factorization in prime factors were taken with TI-73 calculator for 20 elementary school students in the 5th grade math gifted class in Pohang city. Through these lessons, the researcher examined with cases how using the calculator would influenced the lessons for the gifted students, and attempted to obtain implications on using calculators as learning tools in class. Activity sheets were made for this study and a 80-minute lesson was held three times for three weeks. In order to collect data, the class was recorded on videotape, the students were interviewed, and documents used in the class were collected. Then all the data were transcribed. Data analysis was completed through several readings of transcripts and main themes were derived by classifying, comparing, and contrasting coding. As a result of the study, the calculator played a role the tool as the mediation to communicate and the challenge their solvable tasks beyond the limitation of paper and pencil environments. But, in using the calculator, there was differences in gender between boys and girls. Above all, to enter commands into the calculator resulted in obstacles for learning process.

Design and Implementation of Finger Language Translation System using Raspberry Pi and Leap Motion (라즈베리 파이와 립 모션을 이용한 지화 번역 시스템 설계 및 구현)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2006-2013
    • /
    • 2015
  • Deaf are it is difficult to communicate to represent the voice heard, so theay use mostly using the speech, sign language, writing, etc. to communicate. It is the best way to use sign language, in order to communicate deaf and normal people each other. But they must understand to use sign language. In this paper, we designed and implementated finger language translation system to support communicate between deaf and normal people. We used leap motion as input device that can track finger and hand gesture. We used raspberry pi that is low power sing board computer to process input data and translate finger language. We implemented application used Node.js and MongoDB. The client application complied with HTML5 so that can be support any smart device with web browser.

How to Cope with Ransomware in the Healthcare Industry (의료산업에서의 랜섬웨어 대응 방법)

  • Jeon, In-seok;Kim, Dong-won;Han, Keun-hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.155-165
    • /
    • 2018
  • As medical healthcare industry is growing up rapidly these days, providing various new healthcare service is considered carefully. Health information is considered to be more important than financial information; therefore, protecting health information becomes a very significant task. Ransomware is now targeting industry groups that have high information value. Especially, ransomware has grown in various ways since entering maturity in 2017. Healthcare industry is highly vulnerable to ransomeware since most healthcare organizations are configured in closed network with lack of malware protection. Only meeting the security criteria is not the solution. In the case of a successful attack, restoration process must be prepared to minimize damages as soon as possible. Ransomware is growing rapidly and becoming more complex that protection must be improved much faster. Based on ISO 27799 and 27002 standard, we extract and present security measures against advanced ransomware to maintain and manage healthcare system more effectively.

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

On the Use of Radical Isogenies for CSIDH Implementation (CSIDH 성능 향상을 위한 Radical Isogeny 적용 분석)

  • Kim, Suhri
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1137-1148
    • /
    • 2021
  • The main obstacle for implementing CSIDH-based cryptography is that it requires generating a kernel of a small prime order to compute the group action using Velu's formula. As this is a quite painstaking process for small torsion points, a new approach called radical isogeny is recently proposed to compute chains of isogenies from a coefficient of an elliptic curve. This paper presents an optimized implementation of radical isogenies and analyzes its ideal use in CSIDH-based cryptography. We tailor the formula for transforming Montgomery curves and Tate normal form and further optimized the radical 2- and 3- isogeny formula and a projective version of radical 5- and 7- isogeny. For CSIDH-512, using radical isogeny of degree up to 7 is 15.3% faster than standard constant-time CSIDH. For CSIDH-4096, using only radical 2-isogeny is the optimal choice.

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

PID controller design based on direct synthesis for set point speed control of gas turbine engine in warships (함정용 가스터빈 엔진의 속도 추종제어를 위한 DS 기반의 PID 제어기 설계)

  • Jong-Phil KIM;Ki-Tak RYU;Sang-Sik LEE;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Gas turbine engines are widely used as prime movers of generator and propulsion system in warships. This study addresses the problem of designing a DS-based PID controller for speed control of the LM-2500 gas turbine engine used for propulsion in warships. To this end, we first derive a dynamic model of the LM-2500 using actual sea trail data. Next, the PRC (process reaction curve) method is used to approximate the first-order plus time delay (FOPTD) model, and the DS-based PID controller design technique is proposed according to approximation of the time delay term. The proposed controller conducts set-point tracking simulation using MATLAB (2016b), and evaluates and compares the performance index with the existing control methods. As a result of simulation at each operating point, the proposed controller showed the smallest in %OS, which means that the rpm does not change rapidly. In addition, IAE and IAC were also the smallest, showing the best result in error performance and controller effort.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Multi-Behavior Analysis Based on Google Archiving Data (구글 아카이빙 데이터 기반 멀티 행위 분석)

  • Yeeun Kim;Sara Hong;Seongmin Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.737-751
    • /
    • 2023
  • The importance of digital forensics in the cloud environment is increasing as businesses and individuals move their data from On-premise to the cloud. Cloud data can be stored on various devices, including mobile devices and desktops, and encompasses a variety of user behavior artifacts, such as information generated from linked accounts and cloud services. However, there are limitations in securing and analyzing digital evidence due to environmental constraints of the cloud, such as distributed storage of data and lack of artifact linkage. One solution to address this is archiving services, and Google's Takeout is prime example. In this paper, user behavior data is analyzed for cloud forensics based on archiving data and necessary items are selected from an investigation perspective. Additionally, we propose the process of analyzing selectively collected data based on time information and utilizing web-based visualization to meaningfully assess artifact associations and multi-behaviors. Through this, we aim to demonstrate the value of utilizing archiving data in response to the increasing significance of evidence collection for cloud data.