• Title/Summary/Keyword: primary pollutants

Search Result 122, Processing Time 0.028 seconds

Water, Energy, Cooperation, and Conflict inthe Kura-Araks Basin of the South Caucasus

  • Campana, Michael E.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.3-3
    • /
    • 2011
  • After the dissolution of the Soviet Union, the Kra-Araks Basin (KAB) became an international river basin with respect to the South Caucasus states of Armenia, Azerbaijan, and Georgia. However, there are no agreements regarding water allocation, water quality, or ecosystem maintenance among the aforementioned riparians. The main water problems in the basin include not only water quantity and quality, but also the lack of joint management. The aforementioned countries share many similar circumstances: location in a politically unstable but strategic region bureaucratic and structural issues; and more importantly, ongoing ethnic and related conflicts. Despite these obstacles, the countries recognize that they depend greatly on the basin, whose waters they must share. To that end, they proposed and participated in the joint NATO-OSCE South Caucasus River Monitoring (SCRMP) project between 2002 and 2009.The SCRMP sought to investigate and characterize the surface water quality in the KAB by providing equipment and training to all three countries. Several years' worth of water quality data were collected in the KAB: major ions; heavy metals; POPs (persistent organic pollutants); and radionuclides; The North Atlantic Treaty Organization (primary funder) and the Organization for Security and Co-operation in Europesupported the SCRMP not only to build capacity but also to promote cooperation and minimize conflict over water and other resources, thus providing a measure of security for Europe and other regions. The South Caucasus is a strategically-important region, functioning as a bridge between Asia and Europe. Energy-rich Azerbaijan seeks to become a key player in trade by serving as a transportation and energy hub between the energy and mineral-rich Central Asian KUT countries (Kazakhstan, Uzbekistan, and Turkmenistan) and Western Asia, Europe, and other areas. The presentation will summarize the scientific results of the SCRMP, elucidate the regional water-energy-security nexus, discuss future work in the region, and explain why the world needs to be concerned about the KAB and the entire South Caucasus.

  • PDF

Air Quality Improvement Scenario for China during the 13th Five-Year Plan Period

  • Tang, Qian;Lei, Yu;Chen, Xiaojun;Xue, Wenbo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2017
  • China is suffering from severe air pollution especially fine $PM_{2.5}$ pollution. In 2015, the annual average $PM_{2.5}$ concentration of the 338 municipal cities was $50{\mu}g/m^3$, 78% cities at or above the prefectural level failed to comply with the $PM_{2.5}$ concentration standards. The $13^{th}$ Five-Year Plan for National Economic and Social Development set the goal that the annual average concentration of $PM_{2.5}$ in the municipal cities which failed to attain the ambient air quality standards shall be decreased by 18% by 2020 (CCCPC, 2016). In this study, an air pollution control scenario during the $13^{th}$ Five-Year Plan period was proposed and the $SO_2$, $NO_x$ and PM emission reductions in response to different measures in 31 provincial-level regions mainland China by 2020 were estimated. The air quality in the target year (2020) was simulated using the WRF-CMAQ model. The results showed that by 2020, the emissions of $SO_2$, $NO_x$ and primary PM in mainland China will be reduced by 4.19 million tons, 3.94 million tons and 4.41 million tons, a drop of 23%, 21% and 25% respectively compared with that in 2015, and the annual average concentration of $PM_{2.5}$ will decrease by 19%. Coal-fired power plant contributes the most pollutant emission reduction.

Geochemical Study on the Quality of Groundwater in Daegu City, Korea (대구시 지하수의 수질에 대한 지화학적 연구)

  • Lee, In Ho;Lee, Jae Yeong;Kim, Tong Kwon
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.327-340
    • /
    • 1997
  • Geochemical characteristics of groundwater, based on chemical analyses of 54 water samples, differ among main rocks of Haman formation, Panyawoel formation, andesite and granite in Daegu area in relation to mineralogical and chemical compositions of the rocks. Concentrations of most solutes are higher in groundwaters of Haman and Panyawoel formations than in those of andesite and granite. High concentrations of $Ca^{2+}$ and $Mg^{2+}$ in groundwaters of the sedimentary rocks result mainly from reaction of $CO_2$-charged water with calcite and weathered feldspars. Average groundwaters in the sedimentary rocks are oversaturated with respect to calcite. Major types of groundwaters are hard $Ca(HCO_3)_2$ and $CaSO_2-CaCl_2$ with hardness of 442 mg/l for Haman formation and 275 mg/l for Panyawoel formation whereas they are soft $Ca(HCO_3)_2$ with hardness 35 mg/I for andesite and 39 mg/I for granite. $Ca(HCO_3)_2$ type results mainly from calcite-dissolution and $CaSO_4-CaCl_2$ from pyrite and partly from domestic pollutants. $CaSO_4-CaCl_2$ type may indicate that groundwaters in the sedimentary rocks are more evolved geochemically than those in the igneous rocks, but it is not obvious because the type might be affected by pyrie dissolution and domestic pollutions. Acid rain is buffered by active calcite in the sedimentary rocks. In the igneous rocks acid rain might react with gibbsite and other forms of $Al(OH)_3$ that might have accumulated as weathering products of primary silicates, and is buffered.

  • PDF

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • Journal of KIBIM
    • /
    • v.4 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

Infant target facilities and facilities for children in elementary school Comparison and Improvement of Indoor Air Quality for Research (영유아 대상 시설의 실내공기질 특성 비교 및 개선방안에 대한 연구)

  • Seo, Byong-Won;Lee, Ju-Hwa;Park, Ji-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.591-601
    • /
    • 2013
  • In modern society, we are living indoor at 80 - 90 % or more of the day, therefore most people are exposed to unconscious indoor air pollutants by various causes. When mother and infant, whose level of immunity are weak, are exposed to polluted indoor air, respiratory diseases and atopy can occur by the growth of bacteria. Therefore, appropriate indoor air quality management is important especially at nursery, elementary school and postpartum clinic etc. In this study, we compared the characteristics of the indoor air qualities of primary school facilities and infant facilities. In this study, seasonal effects were investigated. Also the effects of individual activity area were studied for indoor air quality. During summer season(May-August), the air qualities of each 16 elementary school and nursery school were investigated. During winter season(October-december), the air qualities of each 10 elementary school and nursery school were investigated. As a result, during winter season in 10 of 16 nursery school, $CO_2$ concentration exceeded regulation level of 1000 ppm. This resulted from the operation of heating system and poor ventilation. Also the air quality of all parameters during winter season were worse than during summer, maybe due to poor ventilation. Except HCHO, the concentrations of other parameters were higher in nursery school. This seems to result from relatively low individual activity area of nursery school than elementary school. From this research, more strong regulation for ventilation and installation of air purifier should be implemented.

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System (복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정)

  • Uhm, Sunghyun;Hong, Gi Hoon;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.237-242
    • /
    • 2021
  • Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.

Delphi Study on the Reduction of Cross-contamination and Improvement of Management System on Firefighting Protection Suit (소방 방화복 교차오염 저감 및 관리체계 개선을 위한 델파이 연구)

  • Kim, Soo Jin;Ham, Seunghon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.182-194
    • /
    • 2022
  • Objectives: This study evaluates and recommends the priority of policy implementation to improve the fire protection clothing management system used by firefighters and the reduction of cross-contamination from contaminated clothing at the scene of a fire. Methods: It consisted of 7 experts and conducted three interviews and two modified Delphi surveys. Through the results of previous research and interviews with experts, a plan to reduce cross-contamination of fire suits and improve the management system was first derived. An improvement plan was presented in the four areas including resources, management, fire protection related work, and laws and regulations, and the priority of policy implementation was derived by analyzing the importance and practicality of the policy at the same time. Results: As a result of the analysis, the first priority was education on the health effects of pollutants at the disaster scene for firefighters, and the second priority was the addition of SOP for the primary decontamination of on-scene personal protective equipment in preparation for the health effects of the disaster scene, and education for fire suppression and rescue workers. The next step was to improve the management system of personal protective equipment such as fire suits and develop a training course for systematic operation. Conclusions: This findings could be used in the implementation of mid- to long-term firefighting policies for the systematic operation and establishment of a systematic management system for personal protective equipment such as fire protective suits.

Effect of Air Pollution on the Primary Production of Pinus thunbergii Forest (대기오염(大氣汚染)이 곰솔림(林)의 물질생산(物質生産)에 미치는 영향(影響))

  • Kim, Tae Wook;Lee, Kyong Jae;Park, In Hyeop
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.33-39
    • /
    • 1985
  • This study was performed to investigate the damage to the primary production of Pinus thunbergii forest from air pollution around the Yeochon Industrial Estate. The data were observed at 6 sites in the vicinity of the above area. The vitality of pine trees and the accumulation of the soluable sulfur and the fluorine were analyzed. Their value was generally increased near the source of air pollutants. The biomass density and annual net production were $1.01kg/m^3$, 5.90 t/ha/yr in the stand 4 respectively and $0.66kg/m^3$, 0.32t/hr/hr in the stand 3 respectively. The net assimilation rate was 0.4 - 1.6 kg/kg/yr and the efficiency of leaf to produce stem was 0.3 - 1.3 kg/kg/yr. The annual growth percentage of volume was 16.0% at the slightly damaged area and 4.0% at the severly damaged area. The maximum mean annual increment per tree was $0.0040m^3$ and $0.0008m^3$ in same order.

  • PDF

Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area (백령도 및 서울 대기오염집중측정소 에어로졸 질량 분석기 자료를 이용한 대기 중 에어로졸 화학적 특성 연구)

  • Park, Taehyun;Ban, Jihee;Kang, Seokwon;Ghim, Young Sung;Shin, Hye-Jung;Park, Jong Sung;Park, Seung Myung;Moon, Kwang Joo;Lim, Yong-Jae;Lee, Min-Do;Lee, Sang-Bo;Kim, Jeongsoo;Kim, Soon Tae;Bae, Chang Han;Lee, Yonghwan;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.430-446
    • /
    • 2018
  • To improve understanding of the sources and chemical properties of particulate pollutants on the Korean Peninsula, An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine particle ($NR-PM_1$) from 2013 to 2015 at Baengnyeong Island and Seoul metropolitan area (SMA), Korea. The chemical composition of $NR-PM_1$ in Baengnyeong island was dominated by organics and sulfate in the range of 36~38% for 3 years, and the organics were the dominant species in the range of 44~55% of $NR-PM_1$ in Seoul metropolitan area. The sulfate was found to be more than 85% of the anthropogenic origin in the both areas of Baengnyeong and SMA. Ratio of gas to particle partition of sulfate and nitrate were observed in both areas as more than 0.6 and 0.8, respectively, representing potential for formation of additional particulate sulfate and nitrate. The high-resolution spectra of organic aerosol (OA) were separated by three factors which were Primary OA(POA), Semi-Volatility Oxygenated Organic Aerosol (SV-OOA), and Low-Volatility OOA(LV-OOA) using positive matrix factorization (PMF) analysis. The fraction of oxygenated OA (SOA, ${\fallingdotseq}OOA$=SV-OOA+LV-OOA) was bigger than the fraction of POA in $NR-PM_1$. The POA fraction of OA in Seoul is higher than it of Baengnyeong Island, because Seoul has a relatively large number of primary pollutants, such as gasoline or diesel vehicle, factories, energy facilities. Potential source contribution function (PSCF) analysis revealed that transport from eastern China, an industrial area with high emissions, was associated with high particulate sulfate and organic concentrations at the Baengnyeong and SMA sites. PSCF also presents that the ship emissions on the Yellow Sea was associated with high particulate sulfate concentrations at the measurement sites.

Comparative Study on the Methodology of Motor Vehicle Emission Calculation by Using Real-Time Traffic Volume in the Kangnam-Gu (자동차 대기오염물질 산정 방법론 설정에 관한 비교 연구 (강남구의 실시간 교통량 자료를 이용하여))

  • 박성규;김신도;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.35-47
    • /
    • 2001
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence. numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristic of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a methodology of motor vehicle emission calculation by using real-time traffic data was studied. A methodology for estimating emissions of CO at a test area in Seoul. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It was calculated speed-related mass of CO emission from traffic tail pipe of data from traffic system, and parameters are considered, volume, composition, average velocity, link length. And, the result was compared with that of a method of emission calculation by VKT(Vehicle Kilometer Travelled) of vehicles of category.

  • PDF