• Title/Summary/Keyword: prevent explosive spalling

Search Result 12, Processing Time 0.04 seconds

Fire Performance of Structural Lightweight Aggregate Concrete using PP fiber (PP섬유 혼입 고강도 경량골재콘크리트의 내화특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.797-800
    • /
    • 2006
  • Normally, Structural light-weight aggregate concrete(LWC) has been main used in high rise building with the object of wight loss. In spite of LWC have the advantage of light-weight, limit the use of strength restrictions by reason that explosive spalling in fire. Especially, LWC is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with fire performance of LWC for the purpose of using PP fibers prevent to explosive spalling. From the experimental test result, LWC is happened explosive spalling.

  • PDF

A Study on the Mechanism of Explosive Spalling and Spalling Prevention Methods of High-Strength Concrete in Fire Temperature (고강도 콘크리트의 폭렬발생 및 폭렬저감 메커니즘에 관한 문헌적 고찰)

  • Jung, Hee-Jin;Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Nowadays, the use of high strength concrete has become increasingly popular. Thus, the theory of this study gives a definition of HSC mechanism through study factors of spalling occurrence of HSC and solutions of failure mechanism. During the fire goes on, building structure using HSC causes explosive spalling and finally it gets to the breaking of the structure down. As a result of this failure mechanism, it remains to be investigated to prevent from explosive spalling of HSC and needs to provide basic problems of HSC at high temperature.

  • PDF

Evaluation on Spalling Properties of Specimen Size with PP Fiber and Fireproof Coating

  • Kim, Gyu-Yong;Min, Choong-Siek;Lee, Tae-Gyu;Miyauchi, Hiroyuki;Park, Gyu-Yeon;Lee, Gwang-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.353-362
    • /
    • 2011
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's being confined in watertight concrete. This study is aimed to evaluate explosive spalling properties of high strength concrete with ${\square}100{\times}100{\times}200$ mm specimen and ${\square}400{\times}400{\times}1500$ mm column. To prevent spalling of concrete, fireproof coating and PP fiber are used. As a result, ${\square}400{\times}400{\times}1500$ mm column was prevented spalling likes ${\times}100{\times}100{\times}200$ mm specimen. When concrete protected failure to explosive spalling, quantity heat ratio (which fireproof coating specimen to pp fiber mixed specimen) between ${\square}100{\times}100{\times}200$ mm and ${\square}400{\times}400{\times}1500$ mm was maximum value at 20 minute, but difference of quantity heat ratio decreased and quantity heat ratio of each specimen is almost same at 30 minute.

Evaluation on Spalling Properties of Ultra High Strength Concrete with Melting and Vaporization of Fiber (유기섬유의 용융 및 기화에 따른 초고강도 콘크리트의 폭렬 특성 평가)

  • Kim, Gyu-Yong;Choe, Gyeong-Cheol;Lee, Joo-Ha;Lee, Seung-Hoon;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • Recently, experimental studies to prevent explosive spalling based on spalling mechanism and addition of Polypropylene fiber in high strength concrete (HSC) are performed actively. However, with respect to ultra high strength concrete (UHSC), its compact internal structure is more difficult release vapor pressure at rapid rising temperature compared to HSC. Therefore, in this study, an experiment was conducted to evaluate spalling properties of UHSC using ${\Box}$ $100mm{\times}100{\times}H200mm$ rectangular specimen according to ISO-834 standard fire curve. With respect melting point of fiber, three fiber types of Polyethylene, Polypropylene, and Nylon fibers with melting temperature of $110^{\circ}C$, $165^{\circ}C$, and $225^{\circ}C$, respectively, were considered. Mixed fiber of 0.15% and 0.25% of concrete volume was used to consider spalling properties based on water vapor pressure release. Then, TGDTA test on fiber and FEM analysis were performed. The results showed that it is difficult to prevent initial spalling without loss of fiber mass even if fiber melting temperature is low. Also, in preventing thermal spalling, fiber that melts to rapidly create porosity within 10 minutes of fire is more effective than that of low melting temperature property of fiber.

Fire Resistance Performance of High Strength Concrete Columns with Fireproof Gypsum Board (방화석고보드를 부착한 고강도 콘크리트 기둥의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hyun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, fire resistance performance of high strength concrete specimen with fireproof gypsum board was investigated for possible use in upgrading fire-resistant performance of the existing building and repair of fire damaged structures. Fire test of eight identical high strength concrete columns were carried out for 180 minutes in accordance with ISO-834. The temperature distributions in longitudinal reinforcement and concrete temperature at various depths were recorded. The fireproof performance of gypsum board and explosive spalling of concrete were observed. The specimens with 15 mm thick twoply fireproof gypsum board spalled after gypsum board crumbled regardless of fastening methods. However, when the thickness of fireproof gypsum board was more than 30 mm, it was possible to prevent the explosive spalling and control the rebar temperature. Although the effect of cover thickness could not be compared because the explosive spalling occurred, there seemed to be no difference in insulation efficiency.

Fire-Resistance Property of Cement Extruding Panel Mixed with Alpha-Hemihydrate Gypsum (알파형 반수석고를 혼입한 시멘트 압출 패널의 내화특성)

  • Choi, Duck-Jin;Lee, Min-Jae;Shin, Sang-choul;Kim, Ki-Suk;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.109-110
    • /
    • 2011
  • Gypsum is an important building material used to provide fire resistance to constructions by reducing their temperature rises. As the hardened gypsum is exposed to fire, evaporation of both the free water and the chemical bond water is easier than that in the cement extruding panel. The purpose of this study is to investigate the utilizability of alpha-hemihydrate gypsum to prevent spalling failure of cement extruding panel exposed to fire. This paper reports the fire-resistance property of a controled general cement extruding panel(C100), and gypsum-cement extruding panels(C50A50, A100) according to replacement ratio of alpha-hemihydrate gypsum. As a results, it is found that A100 and C50A50 are more effective to prevent the explosive spalling failure under standard fire condition than C100.

  • PDF

Fire Resistance Performance of Fiber-Cocktail Reinforced 50 MPa High Strength Concrete (섬유혼입된 50 MPa 고강도 콘크리트의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Park, Jong-Heon
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • After applying the fiber cocktail(polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of 50 MP, the fire test was carried out on specimens in order to evaluate the fire resistance performance, such as possible explosive spalling, temperature distributions of concrete and rebar. According to an enforcement ordinance, four column specimens were exposed to the fire for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed. The required minimum quantity of polypropylene to prevent explosive spalling is more than 0.57 kg per unit concrete volume. The comparing test results from temperature distributions of concrete and rebar has found that the difference of fiber quantity is insignificant.

  • PDF

A Study on the Residual Mechanical Properties of Fiber Mixed Concrete with High Temperature and Load (고온 및 하중에 따른 섬유혼입 콘크리트의 잔존역학적 특성에 관한 연구)

  • Yoon, Dae-Ki;Kim, Gyu-Yong;Choe, Gyeong-Choel;Lee, Tae-Gyu;Koo, Kyung-Mo;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.119-120
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 55%, 42% and 32% exposed to high temperature are compared with those obtained in fiber reinforced concretes of similar characteristics with the ranging of 0,05% to 0,20% polypropylene (PP) fibers by volume of concrete, and considered factors include pre-load levels (20% and 40% of the maximum load at room temperature). Outbreak time and water contents were tested and were determined the compressive strength. In the result, it is showed that to prevent the explosive spalling of 50MPa grade concretes exposed to high temperature need more than 0.05Vol.% PP fibers. Also, the cross-sectional area of PP fiber can influence on the residual mechanical properties and the spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and the brittle tendency.

  • PDF

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.