• Title/Summary/Keyword: prestressing tendons

Search Result 119, Processing Time 0.021 seconds

Minimization of Bursting Force at Anchorage Zone Using Prestressing Order for PSC Box Girder Bridge (PSC 박스거더교 정착부의 최소파열력에 대한 강선긴장순서)

  • Chung, Jee-Seung;Koo, Hyoung-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.103-109
    • /
    • 2001
  • In this paper, the prestressing order of tendons is studied to minimize a bursting force of an anchorage. The bursting forces is a primary factor of anchorage failures. The forces of the anchorage depend on the prestressing order and size of the tendons, if a lot of tendons are introduced to the anchorage. Many studies have been made to analyze the bursting force of the anchorage. However, the studies have been limited to the bursting forces of the anchorage having one or two tendons. PSC box girder bridges usually have a lot of tendons. And the difference of the bursting forces lies in the prestressing order of the tendons. As a result of the lack of studies on the prestressing order for the bridges, the order depends on the designer's intuition and experiences. It may be stated that this study should be useful for determining the reasonable prestressing order of tendons for the PSC box girder bridges.

  • PDF

Effect of Arrangement of the Prestressing Tendons in the Wall of Circular Storage Tank (원형탱크구조물 벽체의 텐던 배치에 대한 고찰)

  • 전세진;정철헌;진병무;김성운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.513-518
    • /
    • 2002
  • Prestressing tendons in the wall of circular storage tank were investigated from the viewpoint of equivalent load method. Special attention was paid to the effectiveness of eccentricities of the circumferential and vertical tendons. Some aspects which are frequently overlooked or misinterpreted in the analysis of vertical tendons are discussed. It is expected that the equivalent load method can be effectively used to simplify the analysis of tendons in the circular wall thus to minimize the errors.

  • PDF

Behaviour of continuous prestressed concrete beams with external tendons

  • Chan, K.H. Enoch;Au, Francis T.K.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1099-1120
    • /
    • 2015
  • External prestressing has been applied to both new construction and retrofitting of existing reinforced and prestressed concrete structures. Continuous beams are preferred to simply supported beams because of economy, fewer movement joints and possible benefits from moment redistribution. However, this paper argues that continuous prestressed concrete beams with external unbonded tendons demonstrate different full-range behaviour compared to reinforced concrete (RC) beams. Applying the same design approach for RC to external prestressing may lead to design with a lower safety margin. To better understand the behaviour of continuous prestressed concrete beams with unbonded tendons, an experimental investigation is performed in which nine such specimens are tested to failure. The full-range behaviour is investigated with reference to moment-curvature relationship and moment redistribution. The amounts of moment redistribution measured in the experiments are compared with those allowed by BS 8110, EC2 and ACI 318. Design equations are also proposed to estimate the curvature ductility index of unbonded prestressed concrete beams.

Electromechanical Relationn of metallic heat wires and Its Application to the Estimation of In_situ Stress of Structural Tendons (금속계열선의 전기기계적 상관작용과 긴장력 계측이 가능한 긴장재)

  • Zi Goang-Seup;Jun Ki-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.445-450
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored.

  • PDF

A Study on Performance Elevation of the deteriorated Concrete Girder Bridge by Continuous and External Tendons (연속화와 외부 프리스트레스 도입에 의한 노후된 콘크리트 거더교의 성능향상에 관한 연구)

  • Park, Seung-Bum;Hong, Seok-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.159-166
    • /
    • 2000
  • The development of external prestressing methods has been one of the major trends in the concrete bridge constructions over the past decades. One of the promising methods to enhance the flexural strength of a externally prestressed girder is to place the tendons with large eccentricities. The analysis and design of composite girders prestressed by external tendons involve difficulties related mainly to the position of anchorages and the construction sequences. This study was conducted on the concrete bridges reinforced by the continuous girders and the external prestressing. The test results in this study showed that the external prestressing of a composite girder increased the range of the elastic behavior, reduced deflections, increased ultimate strength, and added to the redundancy by providing the multiple stress paths.

  • PDF

Numerical Analysis at Anchorage Zone Using Prestressing Order for PSC Bridges (PSC 교량 정착부의 강선긴장순서에 대한 수치해석 연구)

  • Jo, Byung-Wan;Tea, Gi-Ho;Oh, Sea-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.97-105
    • /
    • 2006
  • PSC box girder bridges usually have a lot of tendons, and the difference of the bursting forces lies in the prestressing order of the tendons. As a result of the lack of studies on the prestressing order for the bridges, the order depends on the designer's intuition and experiences. In this paper, with investigation into various methods determining the bursting force of the anchorage, reasonable prestressing order is determined by analysis of PSC beam bridge and PSC box girder bridge with most suitable method. It may be stated that this study would be useful for determining the reasonable prestressing order of tendons for the PSC box girder bridges.

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Fatigue Behavior of Reinforced Concrete Beams Externally Strengthened using FRP Tendons (FRP 긴장재로 외부 보강된 철근콘크리트 보의 피로거동)

  • Park, Sang Yeol;Hong, Sung Ryong;Kim, Chang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.809-817
    • /
    • 2008
  • Recently, the external prestressing method is being much frequently used in strengthening reinforced concrete structures because of it's excellent load resistance and serviceability increases comparing to other strengthening methods. However, it is true that the research on fatigue performance of concrete structures strengthened by the external prestressing using FRP tendons is rare. Therefore, the purpose of this study is to evaluate the safety and feasibility of the external prestressing method by analyzing the characteristics of the reinforced concrete beam strengthening using FRP tendons under repeated loads. Test variables adopted in this experimental study are the types of external prestressing material (steel or FRP tendon) and the repeated load ranges. The repeated load range have the minimum 50% of yield load of reinforced concrete beam and the maximum 70-85%. The test beams are loaded by 4 point loadings with 3 Hz sine wave. From this experimental study, it is confirmed that the reinforced concrete beams strengthened using FRP tendons have sufficient safety against fatigue, especially in FRP tendon itself, tendon at deviators and tendon at anchorages.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

Ultimate Stress of Prestressing Steel in Prestressed Concrete Beams Strengthened by External Prestressing (외부 프리스트레싱으로 보강된 프리스트레스트 콘크리트 보에서 프리스트레싱 강재의 극한응력)

  • Park Sang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.677-686
    • /
    • 2004
  • This study deals with literature review, developing a predicting equation for the ultimate stress of internal and external prestressing steel, and an experimental test with the parameters affecting the ultimate stress of prestressing steel in prestressed concrete beams strengthened by external prestressing tendons. The proposed predicting equation takes rationally the effect of internal and external prestressing steels into consideration as a function of prestressing steel depth to neutral depth ratio. In the experimental study, prestressed concrete beams strengthened using external steel tendons are tested with the test parameters having a large effect on the ultimate stress of internal and external prestressing steel. The test parameters include internal and external prestressing steel reinforcement ratio and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of internal and external prestressing steel. This research shows that the results obtained by the proposed equation for predicting the ultimate stress agreed very well with the test results.