• Title/Summary/Keyword: prestressed hollow-core slab

Search Result 12, Processing Time 0.037 seconds

The Shear Strength of Prestressed Hollow-Core Slab on flexible steel beams (철골보에 연결된 프리스트레스 할로우 코아 슬래브 전단강도)

  • Hong, Sung-Gul;Park, Kyoung-Yeun;Jo, Bong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.397-400
    • /
    • 2004
  • This research aims to estimate the shear strength of the composition of prestressed hollow-core slab and steel beam. The shear strength of prestressed hollow-core slab combined with the steel beam decreases, as the beam deflection increases to a considerable extent. Existing studies on the shear strength of prestressed hollow-core slab are mostly limited to 265mrn- and larger thickness slab on concrete beam. This study investigates the slab of 100mm-thickness combined with steel beam instead of concrete beam. Five shear connector methods are proposed and the shear strength is estimated with or without the beam deflection for each composition method, respectively. Finally the reduction coefficient $(\beta)$ for the transverse shear stress$(\tau_{zx})$, which is critical for the failure of prestressed hollow-core slab, is proposed.

  • PDF

An Analytic Study of Composite Hollow Core Slab Subjected with Box Type Beams (박스형 철골빔이 적용된 프리스트레스 할로우-코어 합성슬래브의 해석연구)

  • Hong, Sung-Gul;Seo, Do-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.311-314
    • /
    • 2005
  • This research aims to analyze of prestressed composite hollow-core slab and box type steel beam. The smeared crack model used in abaqus for the modeling of hollow core reinforced concrete, including cracking of the concrete, rebar and concrete interaction using the tension stiffening concept, and rebar yield. The structure modeled is a simply supported hollow core spancrete slab subjected spa-h beams and prestressed in one direction. The hollow core spancrete slab is subjected to four-point bending. The concrete-rebar interaction that occur as the concrete begins to crack are of major importance in determining the spancrete slab's response between its initial, deformation and its collapse. This smeared crack model used in analysis involved non-liner concrete analysis concept.

  • PDF

A Evaluation on Flexural Behavior for Hollow Core Slab of Fire Resistance section for Residence Building (주거용 내화단면 중공슬래브의 휨거동 평가)

  • Boo, Yoon-Seob;Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • A two-hour fire-resistance PC hollow slab for residential use was developed to secure structural and fire-resistance performance and to be applied to the general building and apartment housing markets. Compared to the existing hollow slab, in order to secure the same or better structural performance and economic feasibility by reducing the quantity, it was attempted to secure the fire resistance performance by reducing the concrete filling rate in the cross section and adjusting the thickness of the upper and lower flanges by optimizing the hollow shape in the cross section of the slab. For structural performance evaluation, experiments were performed on PC hollow slabs by varying the member thickness and the presence or absence of overlaid concrete, and all of the experimental results showed that the design strength was sufficiently exhibited and that stability during construction was possible. The developed synthetic PC hollow slab has secured fire resistance and residential performance so that it can be applied to all buildings, and it is intended to be immediately applied to the field.

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.

Evaluation of Shear Strength of Precast-prestressed Hollow Core Slabs Based on Experiments (실험을 통한 프리캐스트-프리스트레스트 중공슬래브의 전단강도)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kang, Dong-Hoon;Im, Ju-Hyeuk;Kim, Young Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.635-642
    • /
    • 2014
  • The weight of concrete could be reduced by using hollow core slabs instead of heavy solid slabs, leading to cost reduction. The long span be also achieved by introducing prestress in hollow core slabs. but the evaluation of shear strength of precast-prestressed hollow core slabs are needed because the cross section is reduced in web and arranging shear reinforcement is not possible. In this study, the shear strength of precast-prestressed hollow core slabs were evaluated based on experimental tests. For this purpose, six full scale specimens were made and tested. The shear strength of the specimens were compared with those evaluated from current design provision(EC2 ACI, EN1168 and AASHTO).

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement (전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가)

  • Sang-Yoon Kim;Seon-Hoon Kim;Deuck-Hang Lee;Sun-Jin Han;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This study aims to investigate the structural performance of hollow-core slab (HCS) memebers with 400 mm thickness. To this end, a total of four HCS specimens were fabricated based on the individual mold method to provide shear reinforcement, unlike the extrusion method. The key variables were chosen as the presence of topping concrete, core-filling concrete, and shear reinforcements. The crack patterns and load-displacement responses of the test specimens were analyzed in detail. Test results showed that inclined shear cracking occurred all the specimens, and that the specimen with shear reinforcement on the web of HCS unit had higher strength and ductility than the specimen without shear reinforcement. In particular, shear reinforcements placed on the web of HCS unit effectively resisted not only to vertical shear force but also to horizontal shear force between the interface of HCS unit and topping concrete. In addition, it was discovered that the method in which shear reinforcements are placed on the web of HCS unit is more effective in improving structural performance than core-filling method.