• Title/Summary/Keyword: prestress level

Search Result 31, Processing Time 0.028 seconds

Determination of Effective Prestress of Post-tensioned Precast Bridge Piers (포스트텐션 조립식 교각의 유효프리스트레스 크기 결정)

  • Shim, Chang Su;Koem, Chandara
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • In this paper, a design concept of post-tensioned precast bridge piers was proposed to improve seismic behavior of the bridge pier. Mild reinforcing bars are placed continuously along the height of the column. Prestressing tendons are also provided to obtain re-centering capability for seismic events. Arrangement of the axial steels to prevent buckling of rebars at plastic hinge region was suggested and enhanced seismic performance was verified by experiments. Moment-curvature analyses were performed to evaluate the effect of effective prestress on seismic behavior after verifying the calculation method by cyclic tests of the precast columns. A real bridge pier was designed to investigate the seismic performance according to different level of effective prestress. Level of effective prestress showed obvious effect on crushing displacement but negligible effect on lateral displacement at fracture of tendons and reinforcements.

An Experimental Study to Determine the Effective Prestress force of PSC Beam (PSC 부재의 유효 프리스트레스력 평가를 위한 실험적 연구)

  • Chung, Chul-Hun;Park, Jae-Gyun;Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.21-29
    • /
    • 2008
  • To evaluate the structural integrity of the NPP containment building more rigorously, the effective prestress, which is one of the most affecting elements, needs to be estimated exactly. This paper presents the results of an experimental study to determine the effective prestress force in prestressed concrete beams. It is possible to improve the effective prestress measuring method by test beam, which is being applied for the investigation of the nuclear power plant in operation. If experimentally evaluated Lift-Off method in this study can be coupled with test beam test currently being used in in-service nuclear power plant, it is possible to measure prestress loss of the tendon and the level of the effective prestress load.

Flexural Behavior of RC beams Strengthened with Externally Bonded Prestressed CFRP Strips (외부 부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨 거동)

  • You Young Chan;Choi Ki Sun;Park Young-Hwan;Park Jong-Sup;Kim Keung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.255-258
    • /
    • 2005
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded prestressed CFRP (Carbon Fiber Reinforced Polymer) strips. A total of 7 specimens have been manufactured of which specimens strengthened with bonded CFRP strips considering the level of prestress as experimental variable, and a specimen with simply bonded CFRP strips. The following phenomena have been observed through the experimental results. The specimen with simply bonded CFRP strips failed below 50$\%$ of its tensile strength due to premature debonding. On the other hand, all the specimens strengthened with prestressed CFRP strips showed sufficient strengthening performance up to the ultimate rupture load of the CFRP strips. Also, it was observed that the cracking loads and yield loads of the strengthened beams were increased proportionally to the prestress level, but the maximum loads were nearly equal regardless of the prestress level.

  • PDF

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck System of Railway Bridges (철도교용 프리캐스트 바닥판의 적정한 종방향 프리스트레스 수준의 산정)

  • Jang Sung-Wook;Youn Seok-Goo;Jeon Se-Jin;Kim Young-Jin;Hyung Tai-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail. acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses, design codes and theoretical equations for the frequently adopted PSC composite girder railway bridge. The estimated proper prestress level to counteract those tensile stresses is over 2.4 MPa, which is similar to the case of the highway bridges.

  • PDF

Longitudinal Vibration Mechanism of Grouted PSC Tendon (부착식 PSC 텐던의 종진동 메카니즘)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.261-267
    • /
    • 2011
  • This study reveals the longitudinal vibration mechanism of tendon embedded in a prestressed concrete. The extensional and torsional displacements of the strand are coupled, and the applied prestress level of tendon affects not only axial rigidity but also torsional rigidity. Measuring the elastic wave velocity of tendon, the applied prestress level of tendon could be evaluated. This is because the elastic wave velocity is a function of extensional and torsional rigidity. Using the experimental results for the six prsteressed concrete beams with different prestress levels, the longitudinal vibration mechanism and the effect of prestress level have been examined. To estimate the system ridigities of tendon, a system identification algorithm has been newly developed. The estimated system rigidities have been compared with the available results of related previous study.

Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate (긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가)

  • Hong, Ki-Nam;Han, Sang-Hoon;Lee, Byong-Ro;Gwon, Yong-Gil;Woo, Sang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Feasibility Study of Estimating Prestress Force of Grouted Tendons (종진동특성을 이용한 부착식 텐던의 긴장력 추정 타당성 연구)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.103-111
    • /
    • 2010
  • A feasibility study for nondestructively estimating prestress force of a grouted tendon using axial vibrations has been investigated. Total eight prestressed concrete beams with different stress levels have been specially designed and constructed for this investigation. The various axial vibration tests have been conducted in order to extract the dynamic characteristics of the prestressed concrete beams. It turns out that the axial frequency, elastic wave velocity and elastic modulus are nonlinearly increased as the prestress force level increases. It seems that the axial vibration characteristics of the existing grouted tendons are a feasible indicator for the identification of their tensile force.

Static analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Jiang, Chao;Deng, Xiaowei;Feng, Jian;Xu, Yixiang
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1391-1404
    • /
    • 2015
  • A radially retractable roof structure based on the concept of the hybrid grid shell is proposed in this paper. The single-layer steel trusses of the radially foldable bar structure are diagonally stiffened by cables, which leads to a single-layer lattice shell with triangular mesh. Then comparison between the static behavior between the retractable hybrid grid shell and the corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural parameters, such as the rise-to-span ratio, the bar cross section area and the pre-stress of the cables, on the structural behaviors are investigated. The results show that prestressed cables can strengthen the foldable bar shell with quadrangular mesh. Higher structural stiffness is anticipated by introducing cables into the hybrid system. When the rise-span ratio is equal to 0.2, where the joint displacement reaches the minimal value, the structure shape of the hyrbid grid shell approaches the reasonable arch axis. The increase of the section of steel bars contributes a lot to the integrity stiffness of the structure. Increasing cable sections would enhance the structure stiffness, but it contributes little to axial forces in structural members. And the level of cable prestress has slight influence on the joint displacements and member forces.

Experimental Study on Flexural Behavior of RC Beams Strengthened with Prestressed CFRP Plate (CFRP판으로 프리스트레싱 보강한 RC 보의 휨거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kim, Hyung-Jin;Woo, Sang-Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.301-310
    • /
    • 2006
  • Carbon fiber reinforced polymer (CRFP) materials are well suited to the rehabilitation of civil engineering structures due to their corrosion resistance, high strength to weight ratio and high stiffness to weight ratio. Their application in the field of the rehabilitation of concrete structures is increased due to the vast number of bridges and buildings in need of strengthening. However, RC members, strengthened with externally bonded CFRP plates, happened to collapse before reaching the expected design failure load. Therefore, it is necessary to develop the new strengthening method to overcome the problems of previous bonded strengthening method. This problems can be solved by prestressing the CFRP plate before bonding to the concrete. In this study, a total of 21 specimens of 3.3 m length were tested by the four point bending method after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with various prestress levels ranging from 0.4% to 0.8% of CFRP plate strain. All specimen with end anchorage failed by a plate fracture regardless of the prestress levels while the specimen without end anchorage failed by the separation of the plate from the beam due to premature debonding. The cracking loads was proportionally related to the prestress levels, but the maximum loads of specimens strengthened with prestressed CFRP plates were insignificantly affected by the prestress levels.