• 제목/요약/키워드: pressurized water reactor

검색결과 480건 처리시간 0.02초

활성탄 충진 3D 복극전기분해조를 이용한 ETA 처리 (Treatment of ETA wastewater using GAC as particle electrodes in three-dimensional electrode reactor)

  • 김란;김유진;신자원;김정주;박주양
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.241-249
    • /
    • 2013
  • Ethanolamine (ETA) is widely used for alkalinization of water in steam cycles of nuclear power plants with pressurized water reactor. When ETA contained wastewater was released, it could increase COD and T-N. The treatment of the COD and T-N from ETA wastewater was investigated using the GAC as particle electrodes in three-dimensional electrode reactor (TDE). This study evaluated the effectiveness of GAC as particle electrode using different packing ratio at 300 V. The results showed that GAC-TDE could reduce ETA much more efficiently than ZVI-TDE at the mass ratio of GAC to insulator, 1:2. Additionally, The effect of applied electric potential to COD and T-N reduction was investigated. The results showed the high COD, T-N reduction and current efficiency at the low electric potential. Using the GAC-TDE will provide a better ETA reduction with reducing electrical potential dissipation.

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

A Numerical Study on the Effect of DVI Nozzle Location on the Thermal Mixing in RVDC

  • Kang, Hyung-Seok;Cho, Bong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.283-288
    • /
    • 1996
  • Direct safety injection into the reactor vessel downcomer annulus(DVI) is a fundamental feature of the KNGR(Korean Next Generation Reactor) four-train safety injection system. The numerical analysis of thermal mixing of ECC(Emergency Core Cooling) water through DVI with the water in the RVDC(Reactor Vessel Downcomer) annulus has been performed, in order to study the impact of nozzle location on the pressurized thermal shock and safety analysis. The results of this study show that the thermal mixing due to the natural circulation induced by the limiting accident conditions is sufficient to prevent temperature in the RVDC from dropping to the level of concern for PTS. When the DVI nozzle is located right above the cold leg, the temperature distribution at the outlet of flow field is most uniform. The tool used for numerical analysis is CFDS-FLOW3D.

  • PDF

Surrogate based model calibration for pressurized water reactor physics calculations

  • Khuwaileh, Bassam A.;Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1219-1225
    • /
    • 2017
  • In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.

원자로 냉각재 계통을 지지하는 대구경 유압식 스너버의 이동거리 해석 (Stroke Analysis of Large Bore Hydraulic Snubber Supporting Reactor Coolant System)

  • 이상호;윤기석;전장환;박명규;엄세윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.61-67
    • /
    • 1995
  • The steam generator, one of the major components in the reactor coolant system, plays an important role in transferring the thermal energy made in the reactor during normal operation to the secondary side and producing steam to drive turbine. A hydraulic snubber system is used in order to protect the steam generator under the dynamic loading condition and to absorb the thermal expansion transmitted by the reactor coolant piping due to high temperature and pressure during normal operation. In this study, the model for a geometrical linkage system is presented to analyze the snubber stroke of the steam generator and the parameters in the snubber stroke analysis are investigated. A method to analyze lever ratio of the linkage system which is required in the process of determining the snubber stiffness value is also presented. To discuss the validation of the suggested analysis, the analysis results are compared with the measured data during the hot functional test for the standardized 1000 Mwe pressurized water reactor plant under the construction.

  • PDF

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

  • Pilehvar, Ali Farsoon;Esteki, Mohammad Hossein;Hedayat, Afshin;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.654-664
    • /
    • 2018
  • Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established.

차압경수로 및 중수로 폐기물 처분장치에 대한 선형정적 구조해석 (Linear Static Structural Analysis of the Disposal Container for Spent Pressurized Water Reactor and Canadian Deuterium and Uranium Reactor Nuclear Fuels)

  • 권영주;강신욱
    • 한국전산구조공학회논문집
    • /
    • 제14권4호
    • /
    • pp.515-523
    • /
    • 2001
  • 본 논문에서는 고준위 핵폐기물의 지하 처분 시 사용되는 핵폐기물 처분장치의 기본 구조설계에 필요한 처분장치내의 핵 폐기물다발들을 지지하는 내부 삽입물의 구조형상과 재원 또 처분장치의 화학적 부식을 방지하기 위해 외곽에 설치하는 외곽쉘과 위아래 덮개의 두께를 결정하기 위하여 처분장치 구조물에 대한 선형정적 구조해석을 수행하였다. 해석 대상 처분장치는 가압경수로와 중수로의 핵폐기물 처분장치를 사용하였다. 일반적으로 핵폐기물 처분장치는 지하수백 미터에 위치하는 화강암 등의 암반 내에 설치하게 되는데 이 때 지하수의 침수에 의한 지하수압 및 처분장치 외곽에 완충장치로 설치하는 벤토나이트 버퍼의 팽윤압을 견디어 내야 한다. 따라서 이와 같은 압력의 변화에 따른 처분장치 구조물에 발생하는 응력 및 변형 등을 알기 위해서는 처분장치 구조물에 대한 구조해석을 수행해야 된다. 이를 위하여 본 논문에서는 처분장치에 대하여 선형정적 구조해석을 수행하였다.

  • PDF

중수로 연료관 검사시스템 개발 (Development of Fuel Channel Inspection System in PHWR)

  • 최성남;양승옥;김광일;이희종
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.60-67
    • /
    • 2016
  • 가압중수로는 운전중 연료교체가 가능하도록 설계된 연료관에서 핵분열을 유도하여 에너지를 얻는다. 연료관은 핵연료와 직접 접촉하며 원자로 냉각재의 통로인 압력관, 주위 감속재와 접촉하며 원자로에 확관된 원자로관, 이것을 양쪽에서 지지하는 엔드피팅과 압력관과 원자로관의 접촉을 방지하기 위한 스페이서 등으로 구성되어 있다. 연료관은 가장 안전성이 요구되는 설비이므로, 캐나다 기술기준 CSA N 285.4에 따라 주기적이고 철저한 가동중검사를 수행하여 건전성을 확인한다. 월성 중수로 연료관의 가동중검사를 수행하기 위해 연료관 검사시스템을 개발하였다. 본 논문은 월성 연료관 현장시험 결과를 검토하고, 개발된 연료관 검사시스템의 유효성을 확인하였다.