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a b s t r a c t

In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented
and tested. The algorithm relies on the construction of surrogate models to replace the original model
within the region of interest. These surrogate models can be constructed efficiently via reduced order
modeling and subspace analysis. Once constructed, these surrogate models can be used to perform
computationally expensive mathematical analyses. This work proposes a surrogate based model cali-
bration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics
parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to
simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct
a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neu-
tronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation
and calibration are highlighted in an uncertainty quantification study and requantification after the
calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in
key reactor attributes based on experimental and operational data.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Any mathematical model is an approximate representation of
the real phenomenon of interest. Therefore, it is a common practice
within engineering research communities to improve the predict-
ability of mathematical models via model parameter calibration.
Model calibration is a mathematical tool based on solving an in-
verse problem using the connection between experimental and
operational data on one side and the mathematical model and its
parameters on the other. This connection is used to improve the
performance of the mathematical model by calibrating the model's
parameters, along with updating their uncertainties to improve
agreement of model predictions with experimental measurements
and operational data.

Model calibration (sometimes referred to as data assimilation)
has been used in various engineering fields, including nuclear en-
gineering, for the enhancement of the predictions made by math-
ematical models and simulations [1,2]. Although very useful, model

calibration analysis is hindered by twomajor challenges. The first is
the computational burden associated with the high fidelity models
(i.e., reactor core simulators). The second is the curse of dimen-
sionality associated with the number of model parameters that will
need to be calibrated (e.g., nuclear data cross-sections libraries).
Both challenges are further worsened given the fact that the model
calibration is an inverse optimization problem that requires mul-
tiple model executions.

Model calibration, utilizing the long operational experience
with light water reactors, could improve simulation fidelity. In this
work, the delayed rejection adaptive Metropolis (DRAM) algorithm
[3] will be used in conjunction with reduced order modeling based
surrogates, such that the end result is a practical and applicable
algorithm for model calibration for large scale reactor core simu-
lation, overcoming the two major challenges mentioned above.

DRAM is an algorithm for minimizing the samples required
versus using a Markov Chain Monte Carlo algorithm. The DRAM
method performs sample rejection by combining both the delayed
rejection and adaptive Metropolis methods. In the delayed rejec-
tion samples are not rejected directly by the Metropolis sampler; a
second stage proposal sample is generated with an acceptance
probability that is calculated to guarantee convergence to the
posterior probability density function. This second stage proposal
depends on the previous rejected samples, yielding partial
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adaptation of the proposed distribution at each step of the sam-
pling chain; therefore, the next stage can generate more reliable
sample points. These refinements are local in nature and are dis-
carded after each step [4,5]. By contrast, adaptive Metropolis relies
on global adaptation of the proposed covariance based on the
previously accepted samples in the chain. At certain intervals, the
proposed covariance is updated to adapt information gleaned from
the previous samples. This process of adaptation is introduced to
improve the mixing of the chain so that it covers the target dis-
tribution more efficiently for any given number of iterations.

Reduced order modeling can facilitate the two major challenges
mentioned earlier (high computational cost and the curse of
dimensionality). Mathematical surrogates can address the first
problem (the computational burden associated with running the
high fidelity reactor core simulators). By contrast, reducing the
dimensionality of the parameters of interest by identifying the
influential degrees of freedom (DoFs) using the algorithms pre-
sented in Chapter 2 and Chapter 3 of Ref. [6] will address the second
problem (the curse of dimensionality).

Ref. [1] introduced high order predictive model calibration al-
gorithms and applied them to relatively large scale applications,
while Ref. [2] performed model calibration for a few thermal-
hydraulic parameters using a lower order surrogate to replace the
actual thermal-hydraulics simulator. This work will employ poly-
nomial surrogate models to substitute for the original coupled
models in the virtual environment for reactor applications-core
simulator (VERA-CS), which uses MPACT (Michigan Parallel Char-
acteristics Transport Code) as a neutronics model, COBRA-TF
(COolant-Boiling in Rod Arrays-Two Fluids) as a sub-channel ther-
mal-hydraulics model, and ORIGEN (The Oak Ridge Isotope Gen-
eration) for the depletion of the fuel [7]. Therefore, this work
performs model calibration for a three-dimensional core depletion
problem with thermal-hydraulics feedback. Finally, cross-sections
(high dimensional parameter) will be calibrated along with the
few thermal-hydraulics parameters considered here. Verification is
completed using synthetic data, that is, data generated using VERA-
CSwith perturbed parameters, to determine if the actual parameter
perturbations can be assessed and ultimately used to enhance the
uncertainty associated with the responses of interest [5].

2. Surrogate based data assimilation and model calibration

Referring to Ref. [3], it can be noted that several steps make
DRAM limited to small-to-medium parameter dimensionality
problems with reasonable computational burden. If the model is
complex and characterized with high computational cost, then
DRAM is no longer a practical algorithm. Therefore, in this section, a
subspace-based surrogate model with a smaller number of DoFs
will be used to replace the original model of interest, VERA-CS.
Ref. [6] proposes gradient-based and gradient-free algorithms for
identifying the important and influential DoFs for single and multi-
physics modeling. Since the gradient calculation capability is not
always available, the gradient-free approach will be used in this
work to identify the influential DoFs in the form of basis vectors.

Once, the basis is determined (U), a second order goal-oriented
surrogate will be constructed as follows:
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where f is the response of interest (e.g., multiplication factor,
maximum fuel pin power, and maximum fuel pin temperature),
and Dx is the variation in the parameters of interest from the
reference values (e.g., cross-sections, fuel pellet-clad gap conduc-
tivity, and grid loss coefficient).

In order to reduce the number of model runs required to
construct the surrogate form, the gradient-free approach
mentioned before is used to calculate the basis matrix (U) of the
lower dimensional subspace approximation for the parameters’
space. The columns of matrix U represent the influential DoFs.
Before discussing how the matrix U is used in constructing the
surrogate, it is worth mentioning that once the influential DoFs are
determined, the remaining DoFs are actually ignored, which
obviously introduces a source of error in the algorithm. Fortu-
nately, the error introduced by this truncation process can be
quantified and upper bounded using the theory presented in
Ref. [8] and used in [2,6]. To summarize this error upper bound
equation, let us assume that vector y (represents some physical
quantity) is assumed to vary along the DoFs or basis represented
by the columns of matrix UF; then if only the influential DoFs are
identified and collected in matrix U (which is a sub matrix of the
full matrix UF) then the error in representing the variations in the
physical quantity y via U can be upper bounded via the following
expression:
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This upper bound (εupper) is guaranteed with a success proba-
bility of 1e10ep [8] where p is the number of extra snapshots used
to compute that upper bound. For more information about the
theory behind this error upper bund estimation and its applica-
tions, refer to [6,8].

The goal of the surrogate here is to employ it to perform model
calibration analysis, so that the uncertainty and mean of each
parameter might be updated. The implication is that the parameter
perturbations ðDxÞ generated to determine the influential DoFs and
surrogate model are random within the interval of interest. This
contrasts with an uncertainty quantification application, where
parameter perturbations would be based upon sampling the pa-
rameters’ probability distribution functions.

An efficient goal-oriented surrogate can be constructed as
follows:
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where Dxrand is an input vector generated by randomly sampling

the parameters. Given that U2ℝnxr and Da ¼ UTDxrand2ℝr ,

b
T
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1U2ℝr and b

T
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T
2U2ℝr , in order to determine the un-

known elements of b1;r and b2;r the model needs to be run 2r times
so that the coefficients are determined (where r is the number of
influential DoFs or the rank of matrix U which is the dimension of
the identified subspace).

The surrogate based algorithm proposed here depends on two
main points: first, identifying the important DoFs via methods of
subspace analysis (refer to Chapter 3 in [6]). Second, once the
important DoFs are determined in the form of the basis of a sub-

space, these bases can be used to form surrogate models ~f (e.g.,
polynomial or Gaussian process) which can replace the original
computationally expensive model f. The following is a summary of
the algorithm for Surrogate Based Model Calibration (SBMC): (1)
Construct the basis of the lower dimensional subspace
approximation of the parameter space (U); (2) construct the goal-
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oriented surrogate model ð~f Þ; (3) solve the data assimilation

problem (e.g., DRAM) with the surrogate model ~f with the reduced
parameter space ℝr; and (4) after the convergence of the data
assimilation algorithm, the updated reduced parameters (i.e., space
ℝp) are mapped to the original input parameter space (ℝr).

In the following sections, the SBMC will be used to perform pa-
rameters’ calibrations. The parameters of interest are the nuclear
data cross-sections (high dimensional parameter) and two thermal-
hydraulics parameters (fuel pellet-clad gap conductivity and grid
loss coefficients). In this work, we deal with the model calibration
algorithm (i.e. DRAM)as a black box; our contribution is by replacing
the original high fidelity model with a surrogate that has negligible
computational cost to run and reducing the number of model pa-
rameters to deal with by considering the influential DoFs only.

3. Case study: 3-dimensional core depletion problem

The problem of interest is one of the Consortium for Advanced
Simulation of Light Water Reactors (CASL) progression problems.
The problem is a core wide problem represented by Watts Bar
Nuclear Unit 1 for Cycle 1 with depletion (CASL Progression Prob-
lem Number 9) [7]. In this case study, a few parameters are cali-
brated performed via the Surrogate Based Model Calibration
(SBMC). The core simulator of interest is VERA-CS. Fig. 1 presents
the models that make up VERA-CS. Referring to the figure, the
parameters of interestdin this case studydare the pellet-clad gap
conductivity (hgap), and the grid loss coefficient (gloss). In this
example, the cross-sections of interest are the fission, absorption,
and scattering cross-sections for a few isotopes. The number of
energy groups in the VERA-CS cross-sections library used is 47.
Therefore, the number of parameters to be calibrated is 846 cross-
section parameters and two thermal-hydraulics parameters. The
DRAMeQUESO algorithm (encoded in DAKOTA 6.2 [9]) will be
employed to solve the inverse problem using 100,000 samples per
chain (after burning the first 30,000 samples in the chain).

First, the goal-oriented surrogate is constructed in the form
represented by Eq. [1]. The surrogate, constructed as described in
the previous section, is evaluated via examining the norm of re-
siduals (i.e., difference between VERA-CS and surrogate

predictions) and their distributions. In this case study, the
measured attributes are: the multiplication factor (keff), and the
relative fission reaction rate axial distribution at the in-core de-
tector radial locations (FR). The matrix FR is equivalent to
measuring the fission rate over 49 axial levels (within the 56 axial
levels of the core simulator model). Synthetic data will be used
instead of real data for the purpose of proof of concept. Using the
synthetic data implies that the actual solution of the model cali-
bration problem is known a priori enabling the model calibration
method to be verified. Five depletion steps (6 depletion points) are
used to generate the synthetic measurements of interest. Hence,
each response ismeasured at each of the depletion steps (0, 9, 32, 45,
120, 160 Effective Full Power Days (EFPD)). The values of the mea-
surements of keff are: 1.000443, 1.00012,1 1.00013, 0.999951, and
0.99991 with a constant uncertainty of 60 pcm corresponding to a
typical measurement uncertainty of the multiplication factor. The
relative fission rates at the core center are: 1.9321, 1.8962, 1.8212,
1.7612, and 1.7312 with an assumed measurement uncertainty of
0.02 (the complete incore detector readings are used in the data
assimilation; however, these measurements are mentioned here to
exemplify their values). In generating the synthetic data values, the
uncertainties were applied by randomly sampling a normal distri-
bution using the above stated standard deviation values.

The surrogate is constructed using VERA-CS with the perturba-
tions generated randomly within the intervals of interest [hgap
(±50%), gloss (±4%), cross-sections (±5%)]. As noted earlier, the sur-
rogate form-related uncertainty is related to the uncertainty in the
surrogate coefficients determined by the fitting process (refer to
Table 1 for details about the surrogate error analysis). Note that the
RMS for the FR reflects the Root Mean Square (RMS) of a vector
formed from thematrix storing the relative fission rate; that is, εFR ¼
RMSðvecfFRgÞ; where vec is a process that transfers a matrix into a
vector. Due to the computational resource limitation, a 2nd

Fig. 1. Virtual environment for reactor applications-core simulator (VERA-CS) scheme.

Table 1
Surrogate error analysis.

Surrogate order RMS Surrogate formerelated uncertainty

2nd order 14.4 pcm 35.0 pcm (percent milli)
0.0332 0.0093 (Maximum)

B.A. Khuwaileh, P.J. Turinsky / Nuclear Engineering and Technology 49 (2017) 1219e1225 1221



polynomial surrogate is used as previously described. For the sur-
rogate model to be useful, the residual errors need to be an order of
magnitude smaller than the experimental uncertainties. The other
form of uncertainty to be taken into consideration is the surrogate
form related uncertainty, which reflects the effect of the uncertainty
in the surrogate coefficients into the responses of the surrogate.

The surrogate is constructed for each of the modular
components of VERA-CS (MPACT-COBRA-TF-ORIGEN) due to the
computational burden of constructing a surrogate for VERA-CS at
once (which was done in a previous work for an assembly problem
[10]). The implication is to capture feedback effects between the
modular components. The outputs of one component, which serves
as inputs to another component, are represented by surrogate

models the variables of which are the inputs from another
component. In this example, the inputs are: the nuclear data-cross-
section library (MPACT), gap thermal conductivity, spacer grid co-
efficient, and the pin power distribution (COBRA-TF).

The surrogate is then used for simultaneous calibration of the
thermal-hydraulics parameters along with the cross-sections of
interest. The synthetic measurements are first generated via the
high fidelity simulator (VERA-CS) where specific known parame-
ters’ perturbations are used. Next, model calibration is completed
using the surrogate, starting with unperturbed parameter values.
Therefore, as noted above, the ideal solution to the model calibra-
tion problem is known a priori and the performance of the SBMC
can be evaluated by comparing the known perturbations and the

Fig. 2. Grid loss coefficient chain (all points). DRAM, delayed rejection adaptive Metropolis.

Fig. 3. Gap conductivity chain (all points). DRAM, delayed rejection adaptive Metropolis.
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mean variations generated by DRAM in conjunction with the sur-
rogate (SBMC).

For the thermal-hydraulics parameters, a uniform distribution
was used as a priori distribution sampled using the uncertainties
reported earlier with the reference values of the parameters.
Figs. 2 and 3 show the chains and their distributions for the
thermal-hydraulics parameters (grid loss coefficient and gap
conductivity). The variations in the grid spacer loss coefficient are
not identifiable using the current responses of interest, due to the
fact that there is a weak, if any, correlation between the grid
spacer loss coefficients and either the multiplication factor or the
relative fission rate.

Table 2 shows that the SBMC calibrated parameters and their
uncertainties are modified, and while the introduced perturbations
are not exactly retrieved, the perturbations are in the correct di-
rection. In addition, the updated uncertainties seem to be smaller
than the a priori values, which mean that if real experimental
measurements are used in the model calibration analysis, then the
updated uncertainties can be used to requantify the uncertainty in
responses of interest. This benefit will be explored in the next
section.

4. Benefits of model calibration

In this section, the benefits of model calibration are highlighted.
Among these benefits are the enhancement of the model predict-
ability and further understanding of the physical parameters and
their uncertainties and correlations.

In order to exemplify the enhancement of uncertainty estima-
tion via methods of model calibration, the problem discussed in the
previous section is used. Uncertainty quantification is first per-
formed before model calibration using the a priori uncertainty
distributions, and then the uncertainty quantification is recom-
pleted using the posterior uncertainty distributions.

Figs. 4e6 compare the uncertainties in the quantities of interest
prior and posterior to model calibration. The multiplication factor
(keff), maximum fuel pin power (Pmax), and the maximum fuel pin
temperature (Tmax) are the responses of interest for this case study.
In all cases, the posterior uncertainties for the quantities of interest
are reduced from their prior values. Note that the uncertainties (sR)
are generally reduced along with the uncertainty in those un-
certainties (ssR), represented by the shaded area in the figures,
caused by the uncertainty in the surrogate model. This is due to the

Table 2
Model calibration results for a few important parameters.

Parameter Prior value & uncertainty Perturbed value SBMC posterior value & uncertainty

hgap 4500 ± 2250 4359.91 4109.2 ± 504.1
gloss 0.907 ± 0.03628 0.9123 0.9088 ± 0.035
SU�235
f (0.0306e0.012396) eV 1125.219 ± 2.66 1258.435 1267.01 ± 1.11

SU�238
f (2.2313e1.3534) MeV 0.43297 ± 0.00528 0.42523 0.4212 ± 0.00243

SPu�239
f (0.0306e0.012396) eV 1363.475 ± 16.03 1441.313 1436.2 ± 6.11

SH�1
s (0.0306e0.012396) eV 75.35 ± 0.07 82.47610 78.72 ± 0.0382

SO�16
s (0.0306e0.012396) eV 4.33 ± 0.0434 4.629821 4.611 ± 0.0211

Fig. 4. Prior versus posterior uncertainty in keff. EFPD, Effective Full Power Days.
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fact that the updated uncertainty intervals are reduced, and this
affects the uncertainty in the surrogate model when predicting the
quantity of interest.

5. Conclusion

In this work, surrogate based model calibration has been
introduced as an efficient tool to utilize experimental and

operational data for model performance enhancement. A previ-
ously developed gradient-free algorithm based on reduced order
modeling techniques is used to identify the influential DoFs. Once
determined, these DoFs are used to recast the problem in terms of
these DoFs in the form of mathematical surrogates that can replace
the original model.

CASL Progression Problem Number 9 (3 dimensional core
depletion problem with thermal-hydraulics feedback) is used to

Fig. 5. Prior versus posterior uncertainty in Pmax. EFPD, Effective Full Power Days.

Fig. 6. Prior versus posterior uncertainty in Tmax. EFPD, Effective Full Power Days.
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test the SBMC. The surrogates were constructed for each VERA-CS
component (MPACT, COBRA-TF, and ORIGEN) separately due to
the limitation in the computer allocation available. Therefore, the
presented algorithm can be used to perform model calibration
studies with a reasonable computational cost.

This work indicates that model calibration can be used for core
simulator problems to enhance thermal-hydraulic and neutronics
parameters along with their uncertainties. Moreover, the benefits
of model calibration have been explored with regard to uncertainty
requantification, which enabled a considerable reduction in the
uncertainties of the quantities of interest (about 50e85%), as
depicted in Figs. 4e6.
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