• Title/Summary/Keyword: pressurized water reactor

Search Result 481, Processing Time 0.023 seconds

Treatment of ETA wastewater using GAC as particle electrodes in three-dimensional electrode reactor (활성탄 충진 3D 복극전기분해조를 이용한 ETA 처리)

  • Kim, Ran;Kim, Yu-Jin;Shin, Ja-Won;Kim, Jeong-Joo;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.241-249
    • /
    • 2013
  • Ethanolamine (ETA) is widely used for alkalinization of water in steam cycles of nuclear power plants with pressurized water reactor. When ETA contained wastewater was released, it could increase COD and T-N. The treatment of the COD and T-N from ETA wastewater was investigated using the GAC as particle electrodes in three-dimensional electrode reactor (TDE). This study evaluated the effectiveness of GAC as particle electrode using different packing ratio at 300 V. The results showed that GAC-TDE could reduce ETA much more efficiently than ZVI-TDE at the mass ratio of GAC to insulator, 1:2. Additionally, The effect of applied electric potential to COD and T-N reduction was investigated. The results showed the high COD, T-N reduction and current efficiency at the low electric potential. Using the GAC-TDE will provide a better ETA reduction with reducing electrical potential dissipation.

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

A Numerical Study on the Effect of DVI Nozzle Location on the Thermal Mixing in RVDC

  • Kang, Hyung-Seok;Cho, Bong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.283-288
    • /
    • 1996
  • Direct safety injection into the reactor vessel downcomer annulus(DVI) is a fundamental feature of the KNGR(Korean Next Generation Reactor) four-train safety injection system. The numerical analysis of thermal mixing of ECC(Emergency Core Cooling) water through DVI with the water in the RVDC(Reactor Vessel Downcomer) annulus has been performed, in order to study the impact of nozzle location on the pressurized thermal shock and safety analysis. The results of this study show that the thermal mixing due to the natural circulation induced by the limiting accident conditions is sufficient to prevent temperature in the RVDC from dropping to the level of concern for PTS. When the DVI nozzle is located right above the cold leg, the temperature distribution at the outlet of flow field is most uniform. The tool used for numerical analysis is CFDS-FLOW3D.

  • PDF

Surrogate based model calibration for pressurized water reactor physics calculations

  • Khuwaileh, Bassam A.;Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1219-1225
    • /
    • 2017
  • In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.

Stroke Analysis of Large Bore Hydraulic Snubber Supporting Reactor Coolant System (원자로 냉각재 계통을 지지하는 대구경 유압식 스너버의 이동거리 해석)

  • 이상호;윤기석;전장환;박명규;엄세윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.61-67
    • /
    • 1995
  • The steam generator, one of the major components in the reactor coolant system, plays an important role in transferring the thermal energy made in the reactor during normal operation to the secondary side and producing steam to drive turbine. A hydraulic snubber system is used in order to protect the steam generator under the dynamic loading condition and to absorb the thermal expansion transmitted by the reactor coolant piping due to high temperature and pressure during normal operation. In this study, the model for a geometrical linkage system is presented to analyze the snubber stroke of the steam generator and the parameters in the snubber stroke analysis are investigated. A method to analyze lever ratio of the linkage system which is required in the process of determining the snubber stiffness value is also presented. To discuss the validation of the suggested analysis, the analysis results are compared with the measured data during the hot functional test for the standardized 1000 Mwe pressurized water reactor plant under the construction.

  • PDF

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

  • Pilehvar, Ali Farsoon;Esteki, Mohammad Hossein;Hedayat, Afshin;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.654-664
    • /
    • 2018
  • Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established.

Linear Static Structural Analysis of the Disposal Container for Spent Pressurized Water Reactor and Canadian Deuterium and Uranium Reactor Nuclear Fuels (차압경수로 및 중수로 폐기물 처분장치에 대한 선형정적 구조해석)

  • 권영주;강신욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.515-523
    • /
    • 2001
  • In this paper results of a linear structural analysis for design and dimensioning of disposal containers for spent pressurized water reactor nuclear fuel and spent Canadian deuterium and uranium reactor nuclear fuel are presented. The container structure studied here is a solid structure with a cast insert and a corrosion resistant outer shell, which is designed for the spent nuclear fuel disposal in a deep repository. An evenly distributed load of hydrostatic pressure from the groundwater and large swelling pressure from the bentonite buffer are applied on the container. Hence, the container must be designed to endure these large pressure loads. In this study, the array type of inner baskets and thicknesses of outer shell and lid/bottom are attempted to be determined through a linear static structural analysis.

  • PDF

Development of Fuel Channel Inspection System in PHWR (중수로 연료관 검사시스템 개발)

  • Choi, Sung-Nam;Yang, Seung-Ok;Kim, Kwang-Il;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • A pressurized heavy water reactor (PHWR) designed to refuel in service produces the energy required by nuclear fission. The fuel channel consists of components such as a pressure tube which directly contacts the fuel and is a passage for the reactor coolant, a calandria tube which contacts the moderator and is rolled joint with calandria, and a spacer which is not to contact the pressure tube and a calandria tube. As the fuel channel is one of the most important equipments, it requires accurate and periodic inspections to assess the integrity of a reactor in accordance with CSA N285.4. A fuel channel inspection system is developed to inspect fuel channels during in-service inspection in Wolsong unit. In this paper, the results and considerations of a field test are presented in order to show the effectiveness of the developed fuel channel inspection system.