• Title/Summary/Keyword: pressure wave(압력파)

Search Result 296, Processing Time 0.029 seconds

Studies on Through-Bulkhead Initiation Module using VISAR (VISAR을 이용한 격벽 착화 모듈 특성 연구)

  • Jang, Seung-Gyo;Baek, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.16-24
    • /
    • 2010
  • A Through-Bulkhead Initiation Module(TBIM) works as the shock-wave generated by the detonation of donor explosive transmits to acceptor explosive. In order to estimate the minimum thickness of the bulkhead of TBIM, the structural stress of TBIM housing is calculated via modeling analysis, and which shows a sufficient margin in strength as the minimum thickness is bigger than 0.1 mm. The free surface velocity at the metal to explosive interface is measured using VISAR to determine the optimal thickness of bulkhead. The shock pressure is calculated from the measured free surface velocity, and the probability of TBIM with respect to the thickness of bulkhead is estimated by comparing the sensitivity of acceptor explosive with it.

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle (축대칭 핀틀노즐의 3차원 효과 분석)

  • Lee, Gang-Min;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.47-55
    • /
    • 2018
  • In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

Studies in Biomechanical Properties on Brain-spinal Cord Response Mechanism by Human Posture Control Ability (자세조절능력에 따른 뇌-척수 신경 반응기전의 역학적 해석)

  • Yoo, Kyoung-Seok
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.6
    • /
    • pp.449-459
    • /
    • 2019
  • The purpose of this study is to identify how postural mechanics affects postural control on balance and stability by using frequency analysis technique from the kinematic data acquired during the one leg standing posture. For this purpose, the experimental group consisted of two groups, the normal group (n=6) and the national Gymnastics group (n=6). Displacement data of CoP were analyzed by frequency analysis of rambling (RM) and trembling (TR) by FFT signal processing. As a results, there was a significant difference in evaluating the stabilization index between the two groups with the eyes open and closed one leg stnading (p <.05). The cause of the difference was found to be the output of the maximum amplitude of RM (f1) and TR (f2) (p <.05). In particular, in the low frequency RM of 8-9 Hz, which is a natural frequency of signal wave involved in postural feedback feedback, the main frequency appeared to be performs the exercise mechanism of stable brain posture control. And in the high frequency TM of 120-135 Hz, it is considered that the adaptation of the reflective muscle response is minimized to minimize posture shaking. In conclusion, this study provides evidence for the intrinsic main frequencies according to the postural control ability which affects the CNS in one leg standing.

Development of a Simplified Formula for the Damage Radius of a Naval Ship due to an AIR EXplosion (AIREX) (공기 중 폭발에 의한 함정의 손상반경 간이 계산식 개발)

  • Choi, Wan-Soo;Ruy, Won-Sun;Lee, Hyun Yup;Shin, Yun-Ho;Chung, Jung-Hoon;Kim, Euiyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.207-212
    • /
    • 2020
  • To decide a separation distance of the redundant vital equipment in a naval ship, the damage radius due to an aerial explosion should be estimated. In this research, a simplified formula for the damage radius has been developed by using existing empirical formulae for reflected shock pressure and shock lethality value of equipment. As a numerical example, the damage radius for a typical pump aboard a naval ship has been calculated by the developed formula and compared with the results calculated by Measure of Total Integrated Ship Survivability (MOTISS) which is one of survivability analysis codes verified, validated and accredited by the US Navy. Also, comparison with the results calculated by existing other simplified formulae has been made.

Water Hammer in the Pump Pipeline System with an Air Chamber (에어챔버가 설치된 가압펌프 계통에서의 수격현상)

  • Kim, Sang-Gyun;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2007
  • Water hammer following the tripping of pumps can lead to overpressures and negative pressures. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient is modeled using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the effects of the polytropic exponent, the discharge coefficient and the wave speed on the result of the numerical analysis were examined. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effects of related parameters to minimize water hammer have been investigated by both field measurements and numerical modeling.

Mouse Somatosensory Cortex Stimulation Using Pulse Modulated Transcranial Magnetic Stimulation (구형파 변조된 경두개 자기자극을 이용한 쥐의 감각피질 자극실험)

  • Sun, Sukkyu;Seo, Taeyoon;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.482-485
    • /
    • 2016
  • In this work, a transcranial magnetic stimulation(TMS) experiment on animals is performed to stimulate the brain cortex of the mouse using modulated signals. The proposed TMS system is composed of the inverter, transformer, capacitor, variable inductor, and stimulation coil to generate 1.5 mT magnetic field in the brain cortex of the mouse. The stimulation signal is modulated to square wave where the carrier frequency is swept from 85 to 91 kHz to investigate the stimulation effect. The experimental result shows that when the carrier frequency of the stimulation signal is lower than 89 kHz, the reaction of the mouse does not change while the stimulation signal which has the carrier frequency higher than 89 kHz results in decreasing the threshold of the stimulus for the pressure.

A Study of the Thrust Vectoring Control Using Secondary Co- and Counter-Streams (2차 순유동과 역유동을 이용한 추력벡터 제어법에 관한 연구)

  • Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.109-112
    • /
    • 2004
  • Of late, the thrust vectoring control, using fluidic co-flow and counter-flow concepts, has been received much attention since it not only improves the maneuverability of propulsive engine but also reduces an additional material load due to the trailing control wings, which in turn reduce the aerodynamic drag. However, the control effects are not understood well since the flow field involves very complicated non: physics such as shock wave/boundary layer interaction, separation and significant unsteadiness. Existing data are not enough to achieve the effectiveness and usefulness of the thrust vectoring control, and systematic work is required for the purpose of practical applications In the present study, computational study has been performed to investigate the effects of the thrust vector control using the fluidic co-and counter-flow concepts. The results obtained show that, for a given pressure ratio, the thrust deflection angle has a maximum value at a certain suction flow rate, which is at less than $5\%$ of the mass flow rate of the primary jet. With a longer collar, the same vector angle is achievable with smaller mass flow rate.

  • PDF

A Study on Source Mechanisms of Micro-Cracks Induced by Rock Fracture (암석파괴시 발생되는 미세균열의 발생원에 대한 연구)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 1996
  • Acoustic Emission(AE) signals are emitted by a sudden release of strain energy associated with material damage. A multi-channels of LeCroy system and piezoelectric pressure transducers are employed for AE measurement to investigate the roles of AE in the propagation of macro cracks as well as the characteris-tics of AE wave in occurrence, amplitude and dominant frequency with changes in macro loading modes. Deduced crack opening volume of micro cracks varied widely and implies that AE events could be caused by crystal dislocations on a small scale and grain boundary movements on a large scale. Amplitude of first arrival AE wave emitted during mode I test was approximately 3 times higher than those from mixed mode test, while the number of AE count in mode I test was only 25% of mixed mode. It may imply that the total energy required for generation of a given fracture surface is similar regardless in change of macroloading modes.

  • PDF

PIV Measurement and Color Schlieren Observation of Supersonic Jets (PIV 및 컬러 쉴리렌 기법을 이용한 초음속 제트 관측)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Tae Ho;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.604-605
    • /
    • 2017
  • The present work aims at visualization of the supersonic air jet flows discharged from C-D nozzles. In the present experiments, Prticle Image Velocimetry (PIV) was employed to specify the jet flow field quantitatively, and a color Schlieren optical method was applied to observe the same jets qualitatively. The $0.5{\mu}s$ duration of spark light source was used for Schlieren and it can be controled as $0.5{\mu}s$, $1{\mu}s$, $2{\mu}s$ and focusing mode. The convergent-divergent nozzles were used to generate the jet flow with the design Mach number of 2.0, 2.2. Nozzle pressure ratios (NPRs) were varied from 5 to 8. A good comparison of the jet size and shock location from the Schlieren images with the PIV quantitative values is obtained. The obtained images clearly showed the major features of the under-expanded jet, over-expanded jet, sound wave, turbulent eddies and so on.

  • PDF

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect (고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭)

  • Baek, Chung;Lee, Seungsoo;Huh, Jinbum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.