• Title/Summary/Keyword: pressure tubes

Search Result 650, Processing Time 0.03 seconds

Characteristics of Heat Transfer and Pressure Drop for Spirally Indented Tubes with Wire Coil Inserts (와이어 코일이 삽입된 나선형 내면가공관의 열전달 및 압력강하 특성)

  • Choi, In-Su;Park, Byung-Duck;Nam, Sang-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.395-401
    • /
    • 2001
  • The characteristics of heat transfer and pressure drop through tubes has been investigated experimentally for a compound heat transfer enhancement. The test tubes were spirally indented tubes with wire coil inserts which had a various combinations of pitch and helix angles. Pure water was used as working fluids for the experiments, Heat transfer coefficients and friction factors of the test tubes were evaluated from the values of measured temperatures, flow rates and pressure drops. An performance evaluation was performed to find an optimal combination of spirally indented tubes with wire coil inserts. When the helix angle of wire coil insert are $71^{\circ}-72^{\circ}$, the best heat transfer enhancement was shown. The friction factor was 9 - 13 times higher than those in smooth tubes, and the heat transfer was enhanced a maximum of 500%.

  • PDF

Investigation on Characteristics of Pressure Drop and Heat Transfer in the Spirally Indented Tubes (스파이럴리 인덴티드 전열관 내부에서의 압력 강하 및 전열 특성에 관한 고찰)

  • Kim, Do-Hyoung;Kim, Ik-Saeng;Kim, Kyun-Seok;Yoo, Byoung-Hoon;Kim, Chun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.440-446
    • /
    • 2001
  • The pressure drop and heat transfer of the spirally indented tubes were measured and analyzed. Eight sample tubes of indentation depth 0.4, 0.7mm and indentation pitch 10, 14, 20, 26mm were used in this experimental tests. And all the tubes have same outer diameter of 16mm, and same indentation start number of I. Air was used as the internal fluid from 10000 to 50000 for Reynolds Number. The friction factors and heat transfer coefficients have increased when indentation depths increase and indentation pitches decrease. Finally, the correlations were made between the effect of the tube geometry and characteristics of tubes for the pressure drop and heat transfer.

  • PDF

Burst Behavior for Mechanically Machined Axial Flaws of Steam Generator Tubings

  • Hwang, Seong Sik;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 2004
  • It has been reported that some events of a rupture of seam generator tube have occurred in nuclear power plants around the world. Main causes of the leakage are from various types of corrosion in the steam generator(SG) tubings. Primary water stress corrosion cracking(PWSCC) of steam generator tubings have occurred in many tubes in Korean plant, and they were repaired using sleeves or plugs, In order to develop proper repair criteria, it is necessary to ascertain the leak behavior of the tubings. A high pressure leak and burst testing system was manufactured. Various types of Electro Discharged Machined (EDM) notches were developed on the SG tubes. Leak rate and burst pressure were measured on the tubes at room temperature. Burst pressure of the part through wall defected tubes depends on the defect depth, Water flow rates after the burst were independent of the t1aw types; tubes having 20 to 60 mm long EDM notches showed similar flow rates regardless of the defect depth. A fast pressurization rate gave the tube a lower burst pressure than the case of a slow pressurization.

Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes (낮은 핀관에서 대체냉매의 풀비등 열전달계수)

  • 송길홍;이준강;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

Evaporation Heat Transfer and Pressure Drop in Micro-Fin Tubes Before and After Tube-Expansion (마이크로핀관의 확관 전후 열전달 및 압력강하 변화 특성에 관한 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • 연구논문집
    • /
    • s.34
    • /
    • pp.29-38
    • /
    • 2004
  • The objective of this study is to investigate the pressure drop and heat transfer characteristics of the micro-fin tubes before and after the tube-expansion process. Test tubes are single-grooved micro-fin tubes made of copper with an outer diameter of 9.52 mm before the tube-expansion. The direct heating method is applied in order to make the refrigerant evaporated in the micro-fin tubes. The test ranges of the heat flux, mass flux, and the saturation pressure are 5 to 15kW/$m^2$, 100 to 200 kg/$m^2s$ and 540 to 790 kPa, respectively. The effects of the mass flux, heat flux, and the saturation pressure of the refrigerant on the pressure drop and the heat transfer are presented for the refrigerant R22. In the test conditions of this study, the heat transfer coefficient for the micro-fin tube after the tube-expansion is about 16.5% smaller than that before the tube-expansion because the fin height of micro-fin is reduced and the fin shape becomes flatter. The micro-fin tube after the tube-expansion has about 7.7% greater average pressure drop than that before the tube-expansion process.

  • PDF

Burst pressure tests of axial part-through-wall steam generator tubes (증기발생기 축방향 부분관통균열 전열관의 파열 압력 시험)

  • Lee, Kuk-Hee;Kim, Hong-Deok;Kang, Yong-Seok;Nam, Min-Woo;Cho, Nam-Cheoul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.56-63
    • /
    • 2014
  • In this research, burst tests for axial notched steam generator tubes were conducted. To measure the burst pressure of notched tubes, a burst testing system was manufactured. The tests were conducted under internal pressure at room temperature. Part-through-wall and through-wall notches which have various geometries with different depths and lengths were machined by electro-discharged-machined(EDM) method. The burst pressure decreased exponentially with increasing notch length and decreased almost linearly with increasing notch depth. A comparison of the burst pressure with existing burst pressure solutions for cracked tube show that the existing solution agree well with the test results.

Heat Transfer Characteristics of R-407C During Condensing Inside Horizontal Smooth and Micro-Fin Tubes (수평 평활관 및 전열촉진관내 대체 냉매 R-407C의 응축 열전달 특성에 관한 연구)

  • Roh, Geonsang;Oh, Hookyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.210-217
    • /
    • 1999
  • This paper reports the experimental results on heat transfer characteristics of R-22 and R-407C(HFC-32/125/134a 23/25/52 wt%) condensing inside horizontal smooth and finned tubes. The test condensers used In the study are double pipe heat exchangers of 7.5 mm ID, 9.5 mm OD smooth tube, and 60 finned micro-fin tube with 8.53 mm ID, 9.53 mm OD. Each of these tubes was 4 000 mm long tubes connected with an U-bend. These U type two-path test tubes are divided In 8 local test sections for the identification of the local condensing heat transfer characterisitcs and pressure drop, U-bend effects on condensing flows. Inlet quality is maintained 1.0, and refrigerant mass velocity is varied from 102.0 to $301.0kg/m^2{\cdot}s$. From the results, it was found that the pressure drop of the R-407C Increased, and heat transfer coefficient decreased compared to those of R-22. In comparison condensing heat transfer characteristics of micro-fm tube with those of smooth tube, increasing of condensing heat transfer coefficient was found outstanding compared to the increasing ratio of pressure drop. Furthermore, pressure drop In U-bend showed at most a 30 % compared to the total pressure drop in the test section.

Effects of the Groove Type Tubes on Friction Factors in the Annuli (이중관에서 홈형튜브가 압력강하에 미치는 효과)

  • 안수환;손강필;신승화
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.100-105
    • /
    • 2001
  • The present paper is to present the results of studied of pressure drop in annuli with corrugated and spirally fluted inner tubes for the turbulent flow regime. To understand the underlying physical phenomena responsible for heat transfer enhancement, flow mechanism documented elsewhere are combined with pressure drop measurements to confirm the friction factors obtained from the annuli with the grooved inner tubes for the Reynolds number of 1000 to 8000. Friction factors were found to be functions of trough depth, pitch and angle, and the annulus radius ratio. friction factor increases in the spirally fluted tubes were larger than those in the corrugated tubes.

  • PDF

Deformation of the Tubes in Copper/Brass Radiator with Rise of Temperature and Pressure (온도 및 압력상승에 따른 동/황동 라디에터 튜브의 변형)

  • 정명진
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.16-20
    • /
    • 1993
  • The combined effect of increased pressure/temperature and the reduced material thicknesses act to increase the stress on the radiator componets. The design life of the radiator is influenced by the cyclic stresses and corrosion, which act to weaken the materials, radiator mechanical failure occurs when a tube or solder Joint ruptures, causing coolant loss or insufficient heat rejection. Therefore, in this study, through strain measurement of the tubes in copper/brass radiator, the strain distribution of the tubes in radiator as function of temperature and pressure is obtained.

  • PDF

Evaluation of Condensation Pressure Drop Correlations for Microfin Tubes

  • Han, Dong-Hyouck;Lee, Kyu-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.169-174
    • /
    • 2007
  • The characteristics of nine existing condensation frictional pressure drop correlations for microfin tubes were evaluated with geometries, vapor quality, mass flux, and refrigerants. The $M\ddot{u}ller-Steinhagen$ and Heck [17] smooth tube frictional pressure drop correlation was utilized to evaluate the pressure drop penalty factor (PF). Except the Nozu et al. [2], the Kedzierski and Goncalves [3], the Choi et al. [10], and the Cavallini et al. [7], other pressure drop correlations did not consider the effect of tube geometry. The prediction values for R407C by pressure drop correlations show discrepancy with previous researcher's experimental trend. Additional efforts on the development of reliable condensation pressure drop correlation for microfin tubes are still required with the systematic investigation of various effects like geometries and working conditions.