• Title/Summary/Keyword: pressure tube

Search Result 2,124, Processing Time 0.039 seconds

Categorization of Nursing Diagnosis and Nursing Interventions Used in Home Care (가정간호에서 사용된 간호진단과 간호중재 분류)

  • Suh, Mi-Hae;Hur, Hae-Kung
    • Journal of Korean Academic Society of Home Health Care Nursing
    • /
    • v.5
    • /
    • pp.47-60
    • /
    • 1998
  • This study was done to identify basic information in classifying nursing diagnoses and nursing interventions needed for the further development of computerized nursing care plans. Data were collected by reviewing charts of 123 home care clients who had active disease, for whom at least one nursing diagnosis was on the chart, and who had been discharged. Data included demographics, medical orders, nursing diagnoses and nursing interventions. The results of the study, which found the most frequent medical diagnoses to be cancer (40.7%) and brain injury (26.8%), showed that 'Impaired Skin Integrity'(18.3%), 'Risk for Infection'(15.0%), 'Altered Nutrition, Less than Body Requirements'(13.8%), and 'Risk for Impaired Skin Integ rity'(9.9%) were the most frequent nursing diagnoses. 'Pressure Ulcer Care'(28.4%) was the most frequent intervention for 'Impaired Skin Integrity', 'Infection Protection'(16.0%) for 'Risk of Infection', 'Nutrition Counseling'(26.8%) for 'Altered Nutrition' and 'Positioning'(22.0%) for 'Risk for Skin Integrity Impairment', Comparison of interventions with the Nursing Intervention Classification(NIC) showed that the most frequent interventions were in the domain 'Basic Physiological' (33.94%), followed by 'Behavioral'(27.8%), and 'Complex Physiological' (22.6%). Interventions related to teaching family to give care at home could not be classified in the NIC scheme. Examination of the frequency of NIC interventions showed that for the domain 'Activity & Exercise Management', 75% of the interventions were used, but for seven domains, none were used. For the domain 'Immobility Management', 93% of the times that an intervention was used, it was 'Positioning', for the domain 'Tissue Perfusion Management', 'IV Therapy' (59.1%) and for the domain 'Elimination Management', 'Tube Care: Urinary'(54.0%). The nursing diagnoses 'Altered Urinary Elimination' and 'Im paired Physical Mobility' were both used with these clients, but neither 'Fluid Volume Deficit' nor 'Risk of Fluid Volume Deficit' were used rather 'IV Therapy' was an intervention for 'Altered Nutrition, Less than Body Requirements', A comparison of clients with cancer and those with brain injury showed that interventions for the nursing diagnosis 'Impaired Skin Integrity' were more frequent for the clients with cancer, interventions for 'Risk of Infection' were similar for the two groups but for clients with cancer there were more interventions for' Altered Nutrition'. Examination of the nursing diagnoses leading to the intervention 'Positioning' showed that for both groups, it was either 'Impaired Skin Integrity' or 'Risk for Skin Integrity Impairment'. This study identified a need for further refinement in the classification of nursing interventions to include those unique to home care and that for the purposes of computerization identification of the nursing activities to be included in each intervention needs to be done.

  • PDF

Experimental Study of Char Oxidation and Kinetic Rate in O2/CO2 and O2/N2 Environments (O2/CO2조건과 O2/N2조건에서의 촤 연소특성 및 산화 반응성에 관한 실험적 연구)

  • Kim, Song-Gon;Lee, Cheon-Seong;Lee, Byoung-Hwa;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1101-1109
    • /
    • 2010
  • We investigated the combustion rate and kinetic rate of char when burning in oxygen-enriched atmospheres with either an $N_2$ or $CO_2$ bath gas in a drop tube furnace. The experiments were performed with sub-bituminous coal (Adaro) and bituminous coal (Coal valley) under atmospheric pressure conditions. Two different coals were investigated over 12 to 30 vol% oxygen and furnace temperatures of 900, 1100, and $1300^{\circ}C$. For both coals, the particle temperature and overall reaction rate are lower in the $CO_2$ bath gas. However, analysis of single-particle data shows that the surface-specific burning rate of char oxidation is similar in both gases. In addition, the kinetic rate and activation energy for each coal were similar for both gases. Generally, the particle temperature and overall reaction rate of sub-bituminous coal are higher than those of bituminous coal.

Development of FURA Code and Application for Load Follow Operation (FURA 코드 개발과 부하 추종 운전에 대한 적용)

  • Park, Young-Seob;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.88-104
    • /
    • 1988
  • The FUel Rod Analysis(FURA) code is developed using two-dimensional finite element methods for axisymmetric and plane stress analysis of fuel rod. It predicts the thermal and mechanical behavior of fuel rod during normal and load follow operations. To evaluate the exact temperature distribution and the inner gas pressure, the radial deformation of pellet and clad, the fission gas release are considered over the full-length of fuel rod. The thermal element equation is derived using Galerkin's techniques. The displacement element equation is derived using the principle of virtual works. The mechanical analysis can accommodate various components of strain: elastic, plastic, creep and thermal strain as well as strain due to swelling, relocation and densification. The 4-node quadratic isoparametric elements are adopted, and the geometric model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The pellet cracking and crack healing, pellet-cladding interaction are modelled. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behavior accurately and stably. The pellet and cladding model has been compared with both analytical solutions and experimental results. The observed and predicted results are in good agreement. The general behavior of fuel rod is calculated by axisymmetric system and the cladding behavior against radial crack is used by plane stress system. The sensitivity of strain aging of PWR fuel cladding tube due to load following is evaluated in terms of linear power, load cycle frequency and amplitude.

  • PDF

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

Mercury Quantity in a Fluorescent Lamp for a Backlight of LCD-TVs (LCD-백라이트용 형광램프의 수은량)

  • Bong, Jae-Hwan;Kim, Yun-Jung;Hwang, Ha-Chung;Jin, Dong-Jun;Jeong, Jong-Mun;Kim, Jung-Hyun;Koo, Je-Huan;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.495-500
    • /
    • 2008
  • The amount of vapor mercury for the generation of glow discharge plasma has been calculated in a fine tube fluorescent lamp having a mixed gas of Ne+Ar including a mercury. When the ionization of atom is considered by the collision between neutral atoms (Ne, Ar, Hg) and electrons of energy $kT_e{\sim}1\;eV$, the density of vapor mercury atom has been obtained as $n(Hg){\sim}3.43{\times}10^{22}m^{-3}$ for the plasma density $n_o{\sim}10^{17}m^{-3}$. In the fluorescent lamps of out diameter 4 mm used for $32{\sim}42$-inch LCD-TVs having a mixture gas of Ne(95%)+Ar(5%) with the pressure of 50 Torr, the quantity of vapor mercury for the glow discharge has been caculated as 0.02{\sim}0.08\;mg$.

Synthesis of Na-A Type of Zeolite from Funnel-Glass Waste (브라운관의 후면유리 폐기물을 이용한 제올라이트 합성)

  • 장영남;배인국;채수천;류경원
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • Through alkaline hydrothermal activation processes, Na-A type zeolite was synthesized as a single phase with funnel-glass waste from a television tube factory. The autoclaving was performed in a closed teflon vessel in the range of 80~95$^{\circ}$C. The silica-rich solution as a starting material was hydrothermally synthesized with quartz in IN NaOH by heating 350uC under the pressure of 1,500 atm. $NaAlO_2$ was made from NaOH and Al(OHh by heating 95$^{\circ}$C for 2-3 hours and the molar ratios of it were $Na_2O/Al_2O_3$ = 1.4 and $H_2O/Na_2O$=8. The equi-dimensional A type zeolite (1-2 11) was formed by the simple mixing of the silica-rich solution, glass waste and $NaAlO_23$ for 1-3 hours-heating at $80^{\circ}C$. The characterization of the reaction product shows Na-A as a single phase. The synthesized zeolite has cuba-dodecahedral form and $Ca^{2+}$ ion exchange capacity of the Na-A was in the range of 215-220 mequiva1entilOO g.

  • PDF

The Fundamental Studies and Development of the Modified See - Through Hollow Cathode Glow Discharge Cell for Atomic Emission Spectrochemical Analysis (원자 방출 분광 분석을 위한 개선된 관통형 속빈 음극관 글로우 방전 셀 개발 및 기초 연구)

  • Lee, Sung-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Borden, Stuart;Kim, Kyu-Whan;Lee, Change-Su;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.502-508
    • /
    • 2002
  • See-through hollow cathode glow discharge cell has been developed for the trace analysis of metal ions. The systems consists of new glow discharge cell improved the cooling system. In the case of previous type of hollow cathode glow discharge cell, it had been utilized for the trace analysis of metal ions but it had a problem that the plasma becomes unstable by air-cooled device. In this study, the modified hollow cathode glow discharge cell has been developed in order to minimize the problem associated with the air-cooled device. thus the stability of the plasma with water-cooling device has been improved and also the higher plasma temperature has been measured. The fundamental characteristics of modified systems have been investigated. And the discharge parameters, such as discharge pressure, material, and diameter of cathode, have been studied to find optimum discharge conditions.

Numerical Analysis of Flow Characteristies inside innes part of Fluid Control Valve System (유동해석을 통한 유체제어벨브 시스템의 내부 유동 특성 분석)

  • Son, Chang-Woo;Seo, Tae-Il;Kim, Kwang-Hee;Lee, Sun-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.160-166
    • /
    • 2018
  • The worldwide semi-conductor market has been growing for a long time. Manufacturing lines of semi-conductors need to handle several types of toxic gases. In particular, they need to be controlled accurately in real time. This type of toxic gas control system consists of many different kinds of parts, e.g., fittings, valves, tubes, filters, and regulators. These parts obviously need to be manufactured precisely and be corrosion resistant because they have to control high pressure gases for long periods without any leakage. For this, surface machining and hardening technologies of the metal block and metal gasket need to be studied. This type of study depends on various factors, such as geometric shapes, part materials, surface hardening method, and gas pressures. This paper presents strong concerns on a series of simulation processes regarding the differences between the inlet and outlet pressures considering several different fluid velocity, tube diameters, and V-angles. Indeed, this study will very helpful to determine the important design factors as well as precisely manufacture these parts. The EP (Electrolytic Polishing) process was used to obtain cleaner surfaces, and hardness tests were carried out after the EP process.

Investigation on Growth Characteristic of ZnO Nanostructure with Various O2 Pressures by Thermal Evaporation Process (열증착법으로 성장된 ZnO 나노구조물의 산소유량 변화에 대한 성장 변화)

  • Kim, Kyoung-Bum;Jang, Yong-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Jo, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.839-843
    • /
    • 2011
  • ZnO nanostructures were developed on a Si (100) substrate from powder mixture of ZnO and 5 mol% Pd (ZP-5) as reactants by ${\times}$ sccm oxygen pressures(x= 0, 10, 20, 40). DTA (differential thermal analysis) result shows the Pd(5 mol%)+ZnO mixtured powder(PZ-5) is easily evaporated than pure ZnO powder. The PZ-5 mixtured powder was characterized by DTA to determine the thermal decomposition which was found to be at $800^{\circ}C$, $1,100^{\circ}C$. Weight loss(%) and ICP (inductively coupled plasma) analysis reveal that Zn vaporization is decreased by increased oxygen pressures from the PZ-5 at $1,100^{\circ}C$ for 30 mins. Needle-like ZnO nanostructures array developed from 10 sccm oxygen pressure, was well aligned vertically on the Si substrate at $1,100^{\circ}C$ for 30 mins. The lengths of the Needle-like ZnO nanostructures is about 2 ${\mu}m$ with diameters of about 65 nm. The developed ZnO nanostructures exhibited growth direction along [001] with defect-free high crystallinity. It is considered that Zn vaporization is responsible for the growth of Needle-like ZnO nanostructures by controlling the oxygen pressures. The photoluminescence spectra of ZnO nanostructures exhibited stronger 376.7 nm NBE (near band-edge emission) peak and 529.3 nm DLE (deep level energy) peak.

A Study on Mechanical Properties and Applicability of CNT-Mixed Grout (CNT-Mixed grout의 역학적 특성 및 적용성 연구)

  • Kim, Seunghyun;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2022
  • In recent years due to the development of urban and underground space, the number of ground disasters is increasing, and it is also leading to social problems. To solve the problem, a grouting method is generally used. However, the grouting method has material (grout) limitations in permeability, gelation properties and tensile resistance. Therefore, research on grout materials mixed with fibers is actively carried out to improve the problems. However, in the actual ground injection process, many difficulties have been faced causing the blockage of the inlet port and the injection tube. In this study, 'CNT-mixed grout material' was developed using CNT powder that can reinforce the tensile strength of soils. The uniaxial compressive and tensile strength tests were performed to obtain the optimal content and mechanical properties of the CNT Powder-mixed grout. It was found that the optimal CNT powder content is 0.5% that gives the average maximum strength. A one-dimensional injection test and the bulb formation test were carried out, and it was identified that the injection rate and bulb form could be controlled by pressure and mixing ratio. Field application of the CNT-Mixed grout is simulated using numerical analysis of slopes, foundations, and tunnels reinforced in several types. The positive effect of reducing plastic ranges and settlements was confirmed.