• Title/Summary/Keyword: pressure spectrum

Search Result 479, Processing Time 0.024 seconds

A Study on Fluctuating Pressure Load on High Speed Train Passing through Tunnels

  • Seo Sung-Il;Park Choon-Soo;Min Oak-Key
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-493
    • /
    • 2006
  • The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.

Wind Pressure Coefficients and Spectrum Estimation of Dome by Improved Delayed Detached Eddy Simulation (Improved Delayed DES 해석을 통한 돔 형상의 풍압 계수 및 풍압 스펙트럼 산정)

  • Park, Beom-Hee;Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.95-102
    • /
    • 2019
  • In this study, the reliability of the analysis is evaluated by comparing the average wind pressure coefficient, RMS wind pressure coefficient and wind pressure spectrum with same condition of wind tunnel test which are calculated in the high-Reynolds number range of 1.2×106, 2.0×106 each for the typical curved shape dome structure. And it is examined by the reliability of analysis through Improved delayed detached Eddy Simulation(IDDES), which is one of the hybrid RANS/LES techniques that can analyze the realistic calculation range of high Reynolds number. As a result of the study, it was found that IDDES can be predicted very similar to the wind tunnel test. The distribution pattern of the wind pressure coefficient and wind pressure spectrum showed a similar compared with wind tunnel test.

Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load (재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가)

  • Hwang, Jin Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, used by the boundary layer wind tunnel test, have conducted a series of wind tunnel experiments, i.e. test the mean velocity profile regarding the surface roughness, turbulence intensity and power spectrum measured by augmentation device. After that, to provide data relevant for the preliminary design step of tall building hazard fluctuating wind loads may be obtained fluctuating pressure coefficients, fluctuating pressure spectrum, autocorrelation coefficients by the boundary layer wind tunnel test. From the results of experiments, this study can be obtained conclusions as follows. 1. We know the fact that the mean velocity profile and the turbulence intensity are well fitted natural wind flow in the boundary layer wind tunnel. 2. The satisfactory agreement of velocity spectrum can be obtained from the compare of fluctuating power spectrum and Von Karman spectrum. 3. We know the fact that the fluctuating pressure spectrums distributed peak at 0.01 Hz-0.1 Hz in the windward surfaces and at 0.1 Hz in the leeward surfaces. 4. We know the fact that the autocorrelation coefficients distributed stationary random processes with application time of hazard fluctuating wind loads.

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.

Time domain broadband noise predictions for non-cavitating marine propellers with wall pressure spectrum models

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Park, Il-Ryong;Seol, Han-Shin;Kim, Min-Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • The broadband noise can be dominant or important for total characteristics for marine propeller noise representing the minimum base of self-noise. Accurate prediction of such noise is crucial for survivability of underwater military vessels. While the FW-H Formulation 1B can be used to predict broadband trailing edge noise, the method required experiment measurements of surface pressure correlations, showing its limitations in generality. Therefore, in this study, the methods are developed to utilize wall pressure spectrum models to overcome those limitations. Chase model is adopted to represent surface pressure along with the developed formulations to reproduce pressure statistics. Newly developed method is validated with the experiments of airfoils at different velocities. Thereafter, with its feasibility and generality, the procedure incorporating computational fluid dynamics is established and performed for a propeller behind submarine hull. The results are compared with the experiments conducted at Large Cavitation Tunnel, thus showing its usability and robustness.

Higher Order Spectra and Their Application to Mechanical Systems(II) -Analysis on the Interactions of Harmonics in Exhaust Pipe of Engines- (고차스펙트럼과 기계적 시스템의 응용연구(2)-기관 배기관내의 조화파 상호작용 해석-)

  • 이준서;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.85-92
    • /
    • 2000
  • The pulsating pressure waves are composed of fundamental frequency and higher order harmonics in exhaust pipe of engines. The nonlinearity in exhaust pipe is caused by their interactions. The error which is between prediction and measurement is induced by the nonlinearity. We can not explain this phenomenon using linear acoustic theory which is existing theory. So power spectrum which was used in linear theory is not useful. Bispectrum and bicoherence functions which are a higher order spectrum are applicable to explain this phenomenon. This paper proposes a nonlinear effect of pulsating pressure waves. The phenomenon proposed here is identified by using of higher order spectrum density functions.

  • PDF

Cross-Spectral Characteristics of Wall Pressure Fluctuations in Flows over a Backward-Facing Step (후향계단 주위의 난류 박리재부착유동에서의 벽압력변동의 통계적 특징)

  • Lee, In-Won;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.280-287
    • /
    • 2000
  • Laboratory measurements were made of wall pressure fluctuations in a separated and reattaching flow over a backward-facing step. An array of 32 microphones along the streamwise direction was utilized. Various statistical properties of pressure fluctuations were scrutinized. The main emphasis was placed on the flow inhomogeneity along the streamwise direction. One point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with other studies. The coherences and wavenumber spectra in the streamwise directions were indicative of the presence of dual modes in pressure; one is the large-scale vortical structure in low frequency and the other is the boundary-layer-like decaying mode in high frequency.

A Study on the Plant Cultivation by comparing Ultra Constant Discharge (UCD) Lamp lighting and Hi-Pressure Sodium Lamp lighting (초정압방전램프(UCD)와 나트륨램프를 적용한 식물재배에 관한 연구)

  • JEONG, P.G.;KIM, Y.C.;YANG, H.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This study was conducted to research how UCD(Ultra Constant Discharge) lamp lighting affects plant cultivation. To get the results within a short time, lettuce seedling was selected as a plant and nutrient hydroponic beds were used in a dark room for 100% artificial lighting. Two beds were installed for same distance lighting condition with UCD lamp and Hi-pressure Sodium lamp each and another two beds were installed for same light intensity condition with each type of lamp. After 15 days of cultivation, for both conditions, the yields under UCD lamp were weighed more than that under Hi-pressure Sodium lamp. The result can be analyzed that the spectrum of UCD lamp having near sunlight characteristic is much superior to that of Hi-pressure Sodium lamp having a line spectrum characteristic on yellow and red wavelengths for plant cultivation.

Analysis of Wind Pressure Characteristics of Retractable Dome Roof by Opening Type Through Wind Tunnel Test (풍동실험을 통한 개폐 유형별 개폐식 돔 지붕의 풍압 특성 분석)

  • Cheon, Dong-jin;Lee, Jong-Ho;Kim, Yong-Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • In this study the characteristics of wind pressure that are depending on the open type of retractable dome roof were analyzed according to the wind pressure coefficient and wind pressure spectrum. The analysis results showed that the open type and shape of the roof both had a significant impact on the wind pressure changing. In case of the edge to center open type, the wind pressure has not changed much because of the complex turbulence of flow and open area. On the other hand, in case of the center to edge open type, it has confirmed that wind pressure increases due to the separation of flow in windward and open area.