• Title/Summary/Keyword: press drop

Search Result 147, Processing Time 0.02 seconds

Effects of different roll angles on civil aircraft fuselage crashworthiness

  • Mou, Haolei;Du, Yuejuan;Zou, Tianchun
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.391-401
    • /
    • 2015
  • Crashworthiness design and certification have been and will continue to be the main concern in aviation safety. The effects of roll angles on fuselage section crashworthiness for typical civil transport category aircrafts were investigated. A fuselage section with waved-plates under cargo floor is suggested, and the finite element model of fuselage section is developed to simulate drop test subjected to 7 m/s impact velocity under conditions of 0-deg, 5-deg, 10-deg and 15-deg roll angles, respectively. A comparative analysis of failure modes, acceleration responses, and energy absorption of fuselage section under various conditions are given. The results show that the change of roll angles will significantly affect fuselage deformation, seat peak overloads, and energy absorption. The crashworthiness capability of aircraft can be effectively improved by choosing appropriate landing way.

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.

Non-dimensional analysis of cylindrical objects freely dropped into water in two dimensions (2D)

  • Zhen, Yi;Yu, Xiaochuan;Meng, Haozhan;Li, Linxiong
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.267-287
    • /
    • 2020
  • The dropped objects are identified as one of the top ten causes of fatalities and serious injuries in the oil and gas industry. It is of importance to understand dynamics of dropped objects under water to accurately predict the motion of dropped objects and protect the underwater structures and facilities from being damaged. In this paper, we study non-dimensionalization of two-dimensional (2D) theory for dropped cylindrical objects. Non-dimensionalization helps to reduce the number of free parameters, identify the relative size of effects of force and moments, and gain a deeper insight of the essential nature of dynamics of dropped cylindrical objects under water. The resulting simulations of dimensionless trajectory confirms that drop angle, trailing edge and drag coefficient have the significant effects on dynamics of trajectories and landing location of dropped cylindrical objects under water.

Properties of Y-Ba-Cu-O High Tc Superconductor prepared by Sintering, Sintering + HIP and Hot Press (Y-Ba-Cu-O계 고온 초전도체의 제조공정에 따른 물성)

  • Shin, Mee-Nam;Paek, Su-Hyon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.10-12
    • /
    • 1988
  • High Tc Y-Ba-Cu-O Superconductors were fabricated by sintering, sintering + HIP and Hot Pressing. Specimens were sintered at $940^{\circ}C$ and $960^{\circ}C$. In case that sintered specimens were treated by HIP, the relative density was increased 5-6% in comparison with sintered ones. X-ray analysis of each specimens represented orthorhombic phase and Tc measurements showed a sharp drop in the temperature range $95-88^{\circ}K$. The relative density of hot pressed samples was lower than 80%.

  • PDF

Multidisciplinary optimization of collapsible cylindrical energy absorbers under axial impact load

  • Mirzaei, M.;Akbarshahi, H.;Shakeri, M.;Sadighi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2012
  • In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented. The specific absorbed energy and the maximum crushing force are considered as objective functions. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. D/t and L/D ratios are constricted in the range of which collapsing of tubes occurs in concertina or diamond mode. The Non-dominated Sorting Genetic Algorithm-II is applied to obtain the Pareto optimal solutions. A back-propagation neural network is constructed as the surrogate model to formulate the mapping between the design variables and the objective functions. The finite element software ABAQUS/Explicit is used to generate the training and test sets for the artificial neural networks. To validate the results of finite element model, several impact tests are carried out using drop hammer testing machine.

Study on the response of circular thin plate under low velocity impact

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-218
    • /
    • 2015
  • In this paper, forming of fully clamped circular plate by using low velocity impact system has been investigated. This system consists of liquid shock tube and gravity drop hammer. A series of test on mild steel and aluminum alloy plates has been done. The effect of varying both impact load and the plate material on the deflection are described. This paper also presents a simple model to prediction of mid-point deflection of circular plate by using input-output experimental data. In this way, singular value decomposition (SVD) method is used in conjunction with dimensionless number incorporated in such complex process. The results of obtained model have very good agreement with experimental data and it provides a way of studying and understanding the plastic deformation of impact loads.

Effect of hygrothermal aging on GFRP composites in marine environment

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.93-104
    • /
    • 2017
  • In the present work, the effect of hygrothermal aging on the glass fibre and epoxy matrix interface has been investigated by destructive and non-destructive techniques. The glass fiber reinforced polymer (GFRP) composite laminates were prepared using Vacuum Assisted Resin Infusion Molding (VARIM) technique and the specimens were immersed in simulated seawater, followed by quantitative measurement. Besides this, the tensile tests of GFRP specimens revealed a general decrease in the properties with increasing aging time. Also, exposed specimens were characterized by a non-destructive ultrasonic guided Lamb wave propagation technique. The experimental results demonstrate a correlation between the drop in ultrasonic voltage amplitude and fall in tensile strength with increasing time of immersion. Hence, the comparison of the transmitted guided wave signal of healthy vis-a-vis specimens subjected to different extents of hygrothermal aging facilitated performance evaluation of GFRP composites.

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.

Field experimental study for layered compactness of subgrade based on dimensional analysis

  • Han, Dandan;Zhou, Zhijun;Lei, Jiangtao;Lin, Minguo;Zhan, Haochen
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.583-598
    • /
    • 2022
  • The Compaction effect is important for evaluating the subgrade construction. However, there is little research exploring the compaction quality of deep soil using hydraulic compaction. According to reinforcement effect analysis, dimensional analysis is adopted in this work to analyze subgrade compactness within the effective reinforcement depth, and a prediction model is obtained. A hydraulic compactor is then employed to carry out an in-situ reinforcement test on gravel soil subgrade, and the subgrade parameters before and after reinforcement are analyzed. Results show that a reinforcement difference exists inside the subgrade, and the effective reinforcement depth is defined as increasing compactness to 90% in the depth direction. Layered compactness within the effective reinforcement depth is expressed by parameters including the drop distance of the rammer, peak acceleration, tamping times, subgrade settlement, and properties of rammer and filler. Finally, a field test is conducted to verify the results.