Browse > Article
http://dx.doi.org/10.12989/sem.2012.44.3.325

Multidisciplinary optimization of collapsible cylindrical energy absorbers under axial impact load  

Mirzaei, M. (Department of Mechanical Engineering, Islamic Azad University, Damavand Branch)
Akbarshahi, H. (Department of Mechanical Engineering, Amirkabir University of Technology)
Shakeri, M. (Department of Mechanical Engineering, Amirkabir University of Technology)
Sadighi, M. (Department of Mechanical Engineering, Amirkabir University of Technology)
Publication Information
Structural Engineering and Mechanics / v.44, no.3, 2012 , pp. 325-337 More about this Journal
Abstract
In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented. The specific absorbed energy and the maximum crushing force are considered as objective functions. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. D/t and L/D ratios are constricted in the range of which collapsing of tubes occurs in concertina or diamond mode. The Non-dominated Sorting Genetic Algorithm-II is applied to obtain the Pareto optimal solutions. A back-propagation neural network is constructed as the surrogate model to formulate the mapping between the design variables and the objective functions. The finite element software ABAQUS/Explicit is used to generate the training and test sets for the artificial neural networks. To validate the results of finite element model, several impact tests are carried out using drop hammer testing machine.
Keywords
cylindrical tube; axial crushing; energy absorption; neural networks; optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alghamdi, A.A.A. (2001), "Collapsible impact energy absorbers: An Overview", Thin Wall. Struct., 39, 189-213.   DOI   ScienceOn
2 Bi, J., Fang, H., Wang, Q. and Ren, X. (2010), "Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs", Finite Elem. Anal. Des., 46, 698-709.   DOI   ScienceOn
3 Deb, K. (2001), Multi-objective Optimization Using Evolutionary Algorithms, Springer-Verlag Berlin Heidelberg.
4 Deb, K. (2002), "A fast and elitist multi-objective genetic algorithm: NSGA-II", IEEE T. Evolut. Comput., 6(2), 182-97.   DOI   ScienceOn
5 Demuth, H.B., Beale, M. and Hagan, M.T. (2007), Neural Network Toolbox 5 User's Guide, The MathWorks, Inc.
6 Fang, H., Rais-Rohani, M., Liu, Z. and Horstemeyer, M.F. (2005), "A comparative study of metamodeling methods for multi-objective crashworthiness optimization", Compos. Struct., 83(25-26), 2121-36.   DOI   ScienceOn
7 Guillow, S.R., Lu, G. and Grzebieta, R.H. (2001), "Quasi-static axial compression of thin-walled circular aluminum tubes", Int. J. Mech. Sci., 43, 2103-123.   DOI   ScienceOn
8 Hou, S., Li, Q., Long, S., Yang, X. and Li, W. (2007), "Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43, 555-65.   DOI   ScienceOn
9 Hsu, S.S. and Jones, N. (2004), "Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminum alloy tubes", J. Crashworthiness, 9(2), 195-217.   DOI   ScienceOn
10 Jiang, Z. and Gu, M. (2010), "Optimization of a fender structure for the crashworthiness design", Mater. Des., 31, 1085-1095.   DOI
11 Karagiozava, D. and Jones, N. (2000), "Inertia effects in axisymmetrically deformed cylindrical shells under axial impact", Int. J. Impact Eng., 24, 1083-1115.   DOI   ScienceOn
12 Lanzi, L., Bisagni, S. and Ricci, S. (2004), "Neural network systems to reproduce crash behavior of structural components", Comput. Struct., 82, 93-10.   DOI   ScienceOn
13 Lanzi, L., Castelleti, L.M.L. and Anghileri, M. (2004), "Multi-objective optimisation of composite absorber shape under crashworthiness requirements", Comput. Struct., 65, 433-441.   DOI
14 Lanzi, L., Bisagni, C. and Ricci, S. (2004), "Crashworthiness optimization of helicopter subfloor based on decomposition and global approximation", Struct. Multidiscip. O., 27, 401-410.
15 Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Pr. Technol., 130-131, 490-496.   DOI
16 Liu, Y. (2008), "Crashworthiness design of multi-corner thin-walled columns", Thin Wall. Struct., 46, 1329-1337.   DOI   ScienceOn
17 Mirzaei, M., Shakeri, M., Seddighi, M. and Seyedi, S.E. (2010), "Using of neural network and genetic algorithm in multi-objective optimization of collapsible energy absorbers", Proceeding of 2th Eng. Opt. Conf., Lisbon, Portugal.
18 Rosenblatt, F. (1986), "The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review", Psych. Rev., 65, 386-408.
19 Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagation errors", Nature, 323, 533-536.   DOI   ScienceOn
20 Salehghaffari, S., Rais-Rohani, M. and Najafi, A. (2011), "Analysis and optimization of externally stiffened crush tubes", Thin Wall. Struct., 49, 397-408.   DOI   ScienceOn
21 Stander, N., Roux, W., Giger, M., Redhe, M., Fedorova, N. and Haarhoff, J. (2004), "A comparison of metamodeling techniques for crashworthiness optimization", Proceeding of 10th AIAA/ISSMO Conf., Albany, NewYork, paper AIAA 2004-4489.
22 Shakeri, M., Mirzaeifar, R. and Salehghaffari, S. (2007), "New insights into the collapsing of cylindrical thinwalled tubes under axial impact Load", Int. J. Mech. Sci., 221(8), 869-886.
23 Shakeri, M., Beiglou, A.A. and Ghajari, M. (2004), "Numerical analysis of axisymmetric collapse of cylindrical tubes under axial loading", Proceedings of the Seventh CST Conf., Lisbon, Portugal.
24 Andrews, K.R.F., England, G.L. and Ghani, E. (1983), "Classification of the axial collapse of cylindrical tubes under quasi-static loading", Int. J. Mech. Sci., 25(9-10), 687-696.   DOI   ScienceOn
25 Yamazaki, K. and Han, J. (2000), "Maximization of the crushing energy absorption of cylindrical shells", Adv. Eng. Soft., 31, 425-34.   DOI   ScienceOn
26 Yin, H., Wen, G., Hou, S. and Chen, K. (2011), "Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes", Mat. Des., 32, 4449-4460.   DOI
27 Zarei, H.R. and Kroger, M. (2006), "Multi-objective crash-worthiness optimization of circular aluminum tubes", Thin Wall. Struct., 44, 301-308.   DOI   ScienceOn
28 Acar, E., Guler, M.A., Gerc-eker, B., Cerit, M.E. and Bayram, B. (2011), "Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations", Thin Wall. Struct., 49, 94-105.   DOI   ScienceOn
29 Hou, S., Han, X., Sun, G., Long, S., Li, W., Yang, X. and Li, Q. (2011), "Multiobjective optimization for tapered circular tubes", Thin Wall. Struct., 49, 855-863.   DOI   ScienceOn