Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.5.583

Field experimental study for layered compactness of subgrade based on dimensional analysis  

Han, Dandan (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University)
Zhou, Zhijun (School of Highway, Chang'an University)
Lei, Jiangtao (Division of Geotechnical Engineering and Geosciences, Department of Civil and Environmental Engineering, Polytechnic University of Catalonia (UPC))
Lin, Minguo (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University)
Zhan, Haochen (School of Highway, Chang'an University)
Publication Information
Geomechanics and Engineering / v.29, no.5, 2022 , pp. 583-598 More about this Journal
Abstract
The Compaction effect is important for evaluating the subgrade construction. However, there is little research exploring the compaction quality of deep soil using hydraulic compaction. According to reinforcement effect analysis, dimensional analysis is adopted in this work to analyze subgrade compactness within the effective reinforcement depth, and a prediction model is obtained. A hydraulic compactor is then employed to carry out an in-situ reinforcement test on gravel soil subgrade, and the subgrade parameters before and after reinforcement are analyzed. Results show that a reinforcement difference exists inside the subgrade, and the effective reinforcement depth is defined as increasing compactness to 90% in the depth direction. Layered compactness within the effective reinforcement depth is expressed by parameters including the drop distance of the rammer, peak acceleration, tamping times, subgrade settlement, and properties of rammer and filler. Finally, a field test is conducted to verify the results.
Keywords
compactness; dimensional analysis; gravel soil subgrade; hydraulic compaction; road engineering;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Hua, T.B., Yang, X.G., Yao, Q. and Li, H.T. (2018), "Assessment of real-time compaction quality test indexes for rockfill Material based on roller vibratory acceleration analysis", Adv. Mater. Sci. Eng., 2018, 1-15. https://doi.org/10.1155/2018/2879321.   DOI
2 JTG/T 3610-2019 (2019), Technical Specifications for Construction of Highway Subgrades, Ministry of transport of the people's Republic of China; Beijing, China.
3 Ling, J.M., Lin, S., Qian, J.S., Zhang, J.K., Han, B.Y. and Liu, M. (2018), "Continuous compaction control technology for granite residual subgrade compaction", J. Mater. Civil Eng., 30(12), 255-261. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002522.   DOI
4 Meehan, C.L., Cacciola, D.V., Tehrani, F.S. and Baker, W.J. (2017), "Assessing soil compaction using continuous compaction control and location-specific in situ tests", Automat. Constr., 73, 31-44. https://doi.org/10.1016/j.autcon.2016.08.017.   DOI
5 Kodikara, J., Islam, T. and Sounthararajah, A. (2018), "Review of soil compaction: History and recent developments", Transp. Geotech., 17, 24-34. https://doi.org/10.1016/j.trgeo.2018.09.006.   DOI
6 Wang, Y.X. and Liao, Y. (2012), "Experiment research of the lateral properties and density variation of loess subgrade to dynamic compaction for mountainous highway", Appl. Mech. Mater., 1975(412), 1571-1574. https://doi.org/10.4028/www.scientific.net/AMM.204-208.1571.   DOI
7 Wu, Q.Y., Wang, T., Ge, H.B. and Zhu, H.P. (2019), "Dimensional analysis of pounding response of an oscillator based on modified Kelvin pounding model", J. Aerosp. Eng., 32(4), 04019039. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001018.   DOI
8 Xia, D.C. and Li, W.L. (2015), "Dynamic compaction real-time detection based on acceleration measurement", J. Vib. Shock, 34(15), 45-50. https://doi.org/10.13465/j.cnki.jvs.2015.15.009.   DOI
9 Xing, X.M., Chen, L.F., Yuan, Z.H. and Shi, Z.N. (2019), "An improved time-series model considering rheological Parameters for surface deformation monitoring of soft clay subgrade", Sensors, 19(14), 3073. https://doi.org/10.3390/s19143073.   DOI
10 Xu, J.B., Li, H., Du, K., Yan, C.G, Zhao, X., Li, W., and Xu, X.Z. (2018), "Field investigation of force and displacement within a strata slope using a real-time remote monitoring system", Environ. Earth. Sci., 77(15). https://doi.org/10.1007/s12665-018-7729-3.   DOI
11 Xu, M., Song, E.X. and Cao, G.X. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2), 169-178. https://doi.org/10.12989/gae.2009.1.2.169.   DOI
12 Torrijo, F.J., Garzon-Roca, J., Alija, S. and Quinta-Ferreira, M. (2017), "Dynamic compaction evaluation using in situ tests in Sagunto's Harbor, Valencia (Spain)", Environ. Earth Sci., 76(19), 658. https://doi.org/10.1007/s12665-017-7033-7.   DOI
13 Dimitrakopoulos, E., Makris, N. and Kappos, A.J. (2010), "Dimensional analysis of the earthquake response of a pounding oscillator", J. Eng. Mech., 136(3), 299-310. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:3(299).   DOI
14 Nie, Z.H. (2011), "Comparison experimental study on subgrade compaction quality test methods", Appl. Mech. Mater., 71-78, 4679-4684. https://doi.org/10.4028/www.scientific.net/AMM.71-78.4679.   DOI
15 Tian, L.S. Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. https://doi.org/10.12989/gae.2018.16.2.113.   DOI
16 Feng, S.J., Hu, B., Zhang, X. and Shui, W.H. (2012), "Model test study on impact parameters' influence on tamping effect", J. Tongji U. (Natural S.), 40(8), 1147-1153. https://doi.org/10.3969/j.issn.0253-374x.2012.08.005.   DOI
17 Gruzin, A.V., Gruzin, V.V. and Shalay, V.V. (2018), "Model dynamics of a rammer's operating element in a soil foundation of a tank for liquid hydrocarbons storage", AIP. Conf. Proc., 2007(1), 030009. https://doi.org/10.1063/1.5051870.   DOI
18 Mayne, P.W., Jones, J.S. and Dumas, J.C. (1984), "Ground response to dynamic compaction", J. Geotech. Eng. ASCE, 110(6), 757-774. https://doi.org/ 10.1061/(ASCE)0733-9410(1984)110:6(757).   DOI
19 He, C.M. (2006), "Experiment and Research on strengthening high embankment by dynamic compaction method", M.D. Dissertation, Central South University, Changsha.
20 Meehan, C.L., Tehrani, F.S. and Vahedifard, F. (2012), "A comparison of density-based and modulus-based in situ test measurements for compaction control", Geotech. Test. J., 35(3), 387-399.   DOI
21 Wang, X.B. (2011), "Experimental study on Application of on-line compactness detection technology", M.D. Dissertation, Chang'an University, Xi'an.
22 Wersall, C., Nordfelt, I. and Larsson, S. (2018), "Resonant roller compaction of gravel in full-scale tests", Transp. Geotech., 14, 93-97. https://doi.org/10.1016/j.trgeo.2017.11.004.   DOI
23 White, D.J., Jaselskis, E.J., Schaefer, V.R. and Cackler, E.T. (2005), "Real-Time Compaction Monitoring in Cohesive Soils from Machine Response", Transp. Res. Rec., 1936, 173-180. https://doi.org/10.3141/1936-20.   DOI
24 Wu, Y.K., Sang, X.S. and Niu, B. (2012), "High-speed hydraulic compactor application in the bacdkfilled of bridge platform", Appl. Mech. Mater., 212-213, 1201-1204. dimensional10.4028/www.scientific.net/AMM.212-213.1201.   DOI
25 JTG E40-2007 (2007), Test Methods of Soils for Highway Engineering[S]. Beijing: People's Communications Press.
26 Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/gae.2015.9.6.815.   DOI
27 Hu, N.C. (2007), "Study on design parameters of foundation reinforcement by dynamic compaction method", M.D. Dissertation, Shandong University, Jinan.
28 Huang, S.G., Wang, L.J. and Wang, K. (2014), "Application and Numerical Simulation of dynamic compaction on collapsible loess subgrade", Proceeding of the 3rd International Conference on Railway Engineering, Beijing, China, July.
29 Li, C. (2018), "Study on Effective Reinforcement Depth of Dynamic Compaction of Backfilled Sand Foundation", M.D. Dissertation, China University of Geosciences, Beijing.
30 Ma, Z.Y., Dang, F.N. and Liao, H.J. (2014), "Numerical study of the dynamic compaction of gravel soil ground using the discrete element method", Granular Matter., 16(6), 881-889. https://doi.org/10.1007/s10035-014-0529-x.   DOI
31 Yan, B., Lin, P.Y. and Yu, H.T. (2011), "Analysus of settlement and tamping energy dissipation", Chinese J. Geotechnic, 33(S1), 249-252.
32 Yang, J.G., Peng, W.X. and Liu, D.Y. (2004), "Research of choosing tamping factors for dynamic consolidation method", Rock Soil Mech., 2004(8), 1335-1339. https://doi.org/10.16285/j.rsm.2004.08.035.   DOI
33 Yao, Y.P. and Zhang, B.Z. (2016), "Reinforcement range of dynamic compaction based on volumetric strain", Rock Soil Mech., 37(9), 2663-2671. https://doi.org/10.16285/j.rsm.2016.09.031   DOI
34 Zhang, D.Z. and Xiong, Z.Q. (2008), "Calculation of dispersion curve by combined cross-spectrum and phase shift method and its application to evaluate compactness of subgrade", Proceeding of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhan, China, June.
35 Xu, T.Y., Zhou, Z.J., Yan, R.P., Zhang, Z.P., Zhu, L.X., Chen, C.R., Xu, F. and Liu, T. (2020), "Real-time monitoring method for layered compaction quality of loess subgrade based on hydraulic compactor reinforcement", Sensors, 20(15), 4288. https://doi.org/10.3390/s20154288.   DOI
36 Cai, J., Wang, Y.Y. and Luo, M.D. (2013), "Model tests on the layout of punning position in dynamic compaction for loess", Appl. Mech. Mater., 2685(813), 304-309. https://doi.org/10.4028/www.scientific.net/AMM.405-408.304.   DOI
37 Zhang, G.X., Yuan, Z.X., Wang, N., Zhang, Z.Z. and Gao, P. (2013), "Dynamic Response Analysis of Compaction Loess Subgrade", Adv. Mat. Res., 671-674, 202-208. https://doi.org/10.4028/www.scientific.net/AMR.671-674.202.   DOI
38 Zhang, Y., Liu, J.K., Fang, J.H. and Xu A.H. (2013), "Application of dynamic compaction and rolling compaction in the subgrade improvement of Qarhan-Golmud Highway", Sci. Cold Arid Reg., 5(5), 603-607. https://doi.org/10.3724/SP.J.1226.2013.00603.   DOI
39 Xing, H.F., Liu, L.L. and Luo, Y. (2019), "Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability", Geomech. Eng., 18(4), 353-362.https://doi.org/10.12989/gae.2019.18.4.353.   DOI
40 Tehrani, F.S., Meehan, C.L. and Vahedifard, F. (2014), "Comparison of density-based and modulus-based in situ tests for earthwork quality control", Geotech. Spec. Publ., (234 GSP), 2345-2354. https://doi.org/10.1061/9780784413272.228.   DOI
41 Cai, H.B., Kuczek, T., Dunston, P.S. and Li, S. (2017), "Correlating intelligent compaction data to in situ soil compaction quality measurements", J. Constr. Eng. M., 143(8), 04017038. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001333.   DOI
42 Min, Y.Z., Tao, J. and Ren, W.Z. (2020), "A high-precision online monitoring system for surface settlement imaging of railway subgrade", Measurement, 159, 107707. https://doi.org/10.1016/j.measurement.2020.107707.   DOI
43 Adam, D., Adam, C. and Falkner F.J. (2011), "Vibration emission induced by Rapid Impact Compaction", Proceedings of the 8th international conference on structural dynamics, 914-921, Leuven, Belgium, August.
44 Buzzi, O. (2010), "On the use of dimensional analysis to predict swelling strain", Eng. Geol., 116(1-2), 149-156. https://doi.org/10.1016/j.enggeo.2010.08.005.   DOI
45 Buzzi, O., Giacomini, A. and Fityus, S. (2011), "Towards a dimensionless description of soil swelling behaviour", Geotechnique, 61(3), 271-277. https://doi.org/10.1680/geot.7.00194.   DOI
46 Carter, J.P., Sabetamal, H., Nazem, M. and Sloan S.W. (2015), "One-dimensional test problems for dynamic consolidation", Acta Geotech., 10(1), 173-178. https://doi.org/10.1007/s11440-014-0336-x.   DOI
47 Dimitrakopoulos, E., Makris, N. and Kappos, A.J. (2009b), "Dimensional analysis of the earthquake-induced pounding between adjacent struc-tures", Earthq. Eng. Struct. D., 38(7), 867-886. https://doi.org/10.1002/eqe.872.   DOI
48 Dobrzycki, P., Kongar-Syuryun, C. and Khairutdinov, A. (2019), "Vibration reduction techniques for Rapid Impulse Compaction (RIC)", J. Phys.: Conference Series, 1425(1), 012202. http://doi.org/10.1088/1742-6596/1425/1/012202.   DOI
49 Erem yants, V.I. and Uraimov, M. (2009), "Dynamics of hydraulic vibration machine for soil compaction", J. Mach. Manuf. Reliab., 38(5), 425-430. https://doi.org/10.3103/S1052618809050033.   DOI
50 Ghanbari, E. and Hamidi, A. (2014), "Numerical modeling of rapid impact compaction in loose sands", Geomech. Eng., 6(5), 487-502. https://doi.org/10.12989/gae.2014.6.5.487.   DOI
51 Viyanant, C., Rathje, E.M. and Rauch, A.F. (2004), "Compaction control of crushed concrete and recycled asphalt pavement using nuclear gauge", Proceeding of Geotechnical Engineering for Transportation Projects v.1(Geo-Trans 2004), 126, 958-966, Los Angeles, CA, USA, January.
52 Nazhat, Y. and Airey, D. (2015), "The kinematics of granular soils subjected to rapid impact loading", Granul. Matter., 17(1), 1-20. https://doi.org/10.1007/s10035-014-0544-y.   DOI
53 Rinehart, R.V., Mooney, M.A, Facas, N.F. and Musimbi, O.M. (2012), "Examination of roller-Integrated continuous compaction control on Colorado test site", Transp. Res. Rec., 2310(1), 3-9. https://doi.org/10.3141/2310-01.   DOI
54 Zhang, Z.P., Zhou, Z.J., Guo, T., Xu, T.Y., Zhu, L.X., Xu, F., Chen, C.R., and Liu, T. (2021), "A measuring method for layered compactness of loess subgrade based on hydraulic compaction", Meas. Sci. Technol., 32(5), 055106. https://doi.org/10.1088/1361-6501/abd7ab.   DOI
55 Zhou, S.Y., Kang, Y.L., Xie, H.M., Wang, L.H. and Zhang, Q. (2019), "An approach integrating dimensional analysis and field data for predicting the load on tunneling machine", KSCE J. Civ. Eng., 23(7), 3180-3187. https://doi.org/10.1007/s12205-019-0266-0.   DOI
56 Sabbar, A.S., Chegenizadeh, A. and Nikraz, H. (2018), "Effect of slag and bentonite on shear strength parameters of sandy soil", Geomech. Eng., 15(1), 659-668. https://doi.org/10.12989/gae.2018.15.1.659.   DOI
57 Senseney, C.T. and Mooney, M.A. (2010), "Characterization of two-layer soil system using a lightweight deflectometer with radial sensors", Transp. Res. Rec., 2186(1), 21-28. https://doi.org/10.3141/2186-03.   DOI
58 Thilakasiri, H.S., Gunaratne, M., Mullins, G., Stinnette, P. and Jory, B. (1996), "Investigation of impact stresses induced in laboratory dynamic compaction of soft soils", Int. J. Numer. Anal. Met., 20(10), 753-767. https://doi.org/10.1002/(SICI)1096-9853(199610)20:10<753:AID-NAG846>3.0.CO;2-R.   DOI
59 Mei, Y., Hu, C.M., Yuan, Yuan, Y.L., Wang, X.Y. and Zhao, N. (2016), "Experimental study on deformation and strength property of compacted loess", Geomech. Eng., 11(1), 161-175. https://doi.org/10.12989/gae.2016.11.1.161.   DOI
60 Mollamahmutoglu M. and Avci E. (2018), "Dynamic compaction experience in alluvial soils of Carsamba (Turkey)", Maejo. Int. J. Sci. Tech., 12(03),206-220. https://doi.org/
61 Parvizi, M. (2009), "Soil response to surface impact loads during low energy dynamic compaction", J. Appl. S., 9(11), 2088-2096. https://doi.org/10.3923/jas.2009.2088.2096.   DOI
62 Pistrol, J. and Adam, D. (2018), "Fundamentals of roller integrated compaction control for oscillatory rollers and comparison with conventional testing methods", Transp. Geotech., 17, 75-84. https://doi.org/10.1016/j.trgeo.2018.09.010.   DOI
63 Bai, T., Yang, H., Chen, X.B., Zhang, S.C. and Jin, Y.S. (2020), "In-situ monitoring and reliability analysis of an embankment slope with soil variability", Geomech. Eng., 23(3), 261-273. https://doi.org/10.12989/gae.2020.23.3.261.   DOI
64 Herrera, C., Costa P.A. and Caicedo, B. (2018), "Numerical modelling and inverse analysis of continuous compaction control", Transp. Geotech., 17, 165-177. https://doi.org/10.1016/j.trgeo.2018.09.012.   DOI
65 Hu, C.M., Wang, Y.Y., Mei, Y., Yuan, Y.L. and Zhang, S.S. (2018), "Compaction techniques and construction parameters of loess as filling material", Geomech. Eng., 15(6), 1143-1151. https://doi.org/18.15.6.1143.   DOI
66 Anderegg, R. and Kaufmann, K. (2004), "Intelligent compaction with vibratory rollers-Feedback control systems in automatic compaction and compaction control", Transport. Res. Rec., 1868, 124-134. https://doi.org/10.3141/1868-13.   DOI
67 Allouzi, R., Bodour, W.A.L. Alkloub, A. and Tarawneh, B. (2019), "Finite-element model to simulate ground-improvement technique of rapid impact compaction", Proceedings of the institution of civil engineers-ground improvement, 172(1), 44-52. https://doi.org/10.1680/jgrim.18.00057.   DOI
68 Arias-Lara, D. and De-la-Colina, J. (2018), "Assessment of methodologies to estimate displacements from measured acceleration records", Measurement, 114(2018), 261-273. https://doi.org/10.1016/j.measurement.2017.09.019.   DOI
69 Barman, M., Nazari, M., Imran, S.A., Commuri, S. and Zaman, M. (2016), "Quality Improvement of Subgrade Through Intelligent Compaction", Transport. Res. Rec., 2579(1), 59-69. https://doi.org/10.3141/2579-07.   DOI
70 Butterfield, R. (2001), "Dimensional analysis for geotechnical engineers", Geotechnique, 49(3), 357-366. https://doi.org/10.1680/geot.51.1.91.39352.   DOI