• Title/Summary/Keyword: preserving linear map

Search Result 14, Processing Time 0.026 seconds

ON DIAMETER PRESERVING LINEAR MAPS

  • Aizpuru, Antonio;Tamayo, Montserrat
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.197-204
    • /
    • 2008
  • We study diameter preserving linear maps from C(X) into C(Y) where X and Y are compact Hausdorff spaces. By using the extreme points of $C(X)^*\;and\;C(Y)^*$ and a linear condition on them, we obtain that there exists a diameter preserving linear map from C(X) into C(Y) if and only if X is homeomorphic to a subspace of Y. We also consider the case when X and Y are noncompact but locally compact spaces.

STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

  • Chen, Zhengxin;Zhao, Yu'e
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.973-981
    • /
    • 2021
  • Let R be a commutative ring with identity 1, n ≥ 3, and let 𝒯n(R) be the linear Lie algebra of all upper triangular n × n matrices over R. A linear map 𝜑 on 𝒯n(R) is called to be strong commutativity preserving if [𝜑(x), 𝜑(y)] = [x, y] for any x, y ∈ 𝒯n(R). We show that an invertible linear map 𝜑 preserves strong commutativity on 𝒯n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on 𝒯n(R).

FULL SPECTRUM PRESERVING LINEAR MAPPING BETWEEN STLICTLY DENSE BANACH ALGEBRAS

  • Lee, Young-Whan;Park, Kyoo-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.303-307
    • /
    • 1999
  • Let A and B be two strictly dense Banach Algebras on X and Y respectively where X and Y are Banach space. We give some conditions under which full spectrum preserving linear mappings from A into B Jordan morphisms and X is homomorphic to Y.

DYNAMICS ON AN INVARIANT SET OF A TWO-DIMENSIONAL AREA-PRESERVING PIECEWISE LINEAR MAP

  • Lee, Donggyu;Lee, Dongjin;Choi, Hyunje;Jo, Sungbae
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.583-597
    • /
    • 2014
  • In this paper, we study an area-preserving piecewise linear map with the feature of dangerous border collision bifurcations. Using this map, we study dynamical properties occurred in the invariant set, specially related to the boundary of KAM-tori, and the existence and stabilities of periodic orbits. The result shows that elliptic regions having periodic orbits and chaotic region can be divided by smooth curve, which is an unexpected result occurred in area preserving smooth dynamical systems.

MAPS PRESERVING m- ISOMETRIES ON HILBERT SPACE

  • Majidi, Alireza
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.735-741
    • /
    • 2019
  • Let ${\mathcal{H}}$ be a complex Hilbert space and ${\mathcal{B}}({\mathcal{H}})$ the algebra of all bounded linear operators on ${\mathcal{H}}$. In this paper, we prove that if ${\varphi}:{\mathcal{B}}({\mathcal{H}}){\rightarrow}{\mathcal{B}}({\mathcal{H}})$ is a unital surjective bounded linear map, which preserves m- isometries m = 1, 2 in both directions, then there are unitary operators $U,V{\in}{\mathcal{B}}({\mathcal{H}})$ such that ${\varphi}(T)=UTV$ or ${\varphi}(T)=UT^{tr}V$ for all $T{\in}{\mathcal{B}}({\mathcal{H}})$, where $T^{tr}$ is the transpose of T with respect to an arbitrary but fixed orthonormal basis of ${\mathcal{H}}$.

Isometries of a Subalgebra of C(1)[0, 1]

  • Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.61-69
    • /
    • 1991
  • By $C^{(1)}$[0, 1] we denote the Banach algebra of complex valued continuously differentiable functions on [0, 1] with norm given by $${\parallel}f{\parallel}=\sup_{x{\in}[0,1]}({\mid}f(x){\mid}+{\mid}f^{\prime}(x){\mid})\text{ for }f{\in}C^{(1)}$$. By A we denote the sub algebra of $C^{(1)}$ defined by $$A=\{f{\in}C^{(1)}:f(0)=f(1)\text{ and }f^{\prime}(0)=f^{\prime}(1)\}$$. By an isometry of A we mean a norm-preserving linear map of A onto itself. The purpose of this article is to describe the isometries of A. More precisely, we show tht any isometry of A is induced by a point map of the interval [0, 1] onto itself.

  • PDF

ONE-HOMOGENEOUS WEIGHT CODES OVER FINITE CHAIN RINGS

  • SARI, MUSTAFA;SIAP, IRFAN;SIAP, VEDAT
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.2011-2023
    • /
    • 2015
  • This paper determines the structures of one-homogeneous weight codes over finite chain rings and studies the algebraic properties of these codes. We present explicit constructions of one-homogeneous weight codes over finite chain rings. By taking advantage of the distance-preserving Gray map defined in [7] from the finite chain ring to its residue field, we obtain a family of optimal one-Hamming weight codes over the residue field. Further, we propose a generalized method that also includes the examples of optimal codes obtained by Shi et al. in [17].

MAPS PRESERVING JORDAN AND ⁎-JORDAN TRIPLE PRODUCT ON OPERATOR ⁎-ALGEBRAS

  • Darvish, Vahid;Nouri, Mojtaba;Razeghi, Mehran;Taghavi, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.451-459
    • /
    • 2019
  • Let ${\mathcal{A}}$ and ${\mathcal{B}}$ be two operator ${\ast}$-rings such that ${\mathcal{A}}$ is prime. In this paper, we show that if the map ${\Phi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is bijective and preserves Jordan or ${\ast}$-Jordan triple product, then it is additive. Moreover, if ${\Phi}$ preserves Jordan triple product, we prove the multiplicativity or anti-multiplicativity of ${\Phi}$. Finally, we show that if ${\mathcal{A}}$ and ${\mathcal{B}}$ are two prime operator ${\ast}$-algebras, ${\Psi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is bijective and preserves ${\ast}$-Jordan triple product, then ${\Psi}$ is a ${\mathbb{C}}$-linear or conjugate ${\mathbb{C}}$-linear ${\ast}$-isomorphism.

Geodesics-based Shape-preserving Mesh Parameterization (직선형 측지선에 기초한 원형보전형 메쉬 파라미터화)

  • 이혜영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.7
    • /
    • pp.414-420
    • /
    • 2004
  • Among the desirable properties of a piecewise linear parameterization, guaranteeing a one-to-one mapping (i.e., no triangle flips in the parameter plane) is often sought. A one-to-one mapping is accomplished by non-negative coefficients in the affine transformation. In the Floater's method, the coefficients were computed after the 3D mesh was flattened by geodesic polar-mapping. But using this geodesic polar map introduces unnecessary local distortion. In this paper, a simple variant of the original shape-preserving mapping technique by Floater is introduced. A new simple method for calculating barycentric coordinates by using straightest geodesics is proposed. With this method, the non-negative coefficients are computed directly on the mesh, reducing the shape distortion introduced by the previously-used polar mapping. The parameterization is then found by solving a sparse linear system, and it provides a simple and visually-smooth piecewise linear mapping, without foldovers.

INVOLUTION-PRESERVING MAPS WITHOUT THE LINEARITY ASSUMPTION AND ITS APPLICATION

  • Xu, Jin-Li;Cao, Chong-Guang;Wu, Hai-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.97-103
    • /
    • 2009
  • Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

  • PDF