
Bull. Korean Math. Soc. 52 (2015), No. 6, pp. 2011–2023
http://dx.doi.org/10.4134/BKMS.2015.52.6.2011

ONE-HOMOGENEOUS WEIGHT CODES

OVER FINITE CHAIN RINGS

Mustafa Sari, Irfan Siap, and Vedat Siap

Abstract. This paper determines the structures of one-homogeneous
weight codes over finite chain rings and studies the algebraic properties
of these codes. We present explicit constructions of one-homogeneous
weight codes over finite chain rings. By taking advantage of the distance-
preserving Gray map defined in [7] from the finite chain ring to its residue
field, we obtain a family of optimal one-Hamming weight codes over the
residue field. Further, we propose a generalized method that also includes
the examples of optimal codes obtained by Shi et al. in [17].

1. Introduction

Constant-weight codes represent an important class of codes within the fam-
ily of error-correcting codes [11]. A linear code having constant-weight means
that every nonzero codeword has the same weight. In the literature there are
many papers on binary constant-weight codes which have several applications
such as the design of demultiplexers for nano-scale memories [8] and the con-
struction of frequency hopping lists for use in GSM networks [12]. Especially,
considerable research has been done on the central problem regarding constant-
weight codes which is the determination of A(n, d, w), the largest possible size
of a constant-weight code of length n, Hamming distance at least d, and con-
stant weight w. Due to the difficulty in finding good constant-weight codes,
various upper and lower bounds on A(n, d, w) have been developed [1, 3, 15, 18].
Moreover, there are further studies in this direction including nonbinary finite
fields in [2, 10]. It has been shown that there exists a unique one-weight binary
linear code of dimension k such that any two columns in its generator matrix
are linearly independent for every positive integer k. Later, this result has been
extended to the ring Z4(integers modulo 4) and to the ring Zpm(integers mod-
ulo pm), respectively [4, 16]. In [4], it has been shown that for every ordered
pair of nonnegative integers (k1, k2), there exists a unique (up to equivalence)
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one-weight Z4-linear code of type 4k12k2 . Wood [19] classified the structure of
linear codes of constant weight over the ring ZN and gave a general implicit
description of constructing constant weight codes over the ring ZN . The clas-
sification in [19] has reproved the classical result about linear codes of constant
Hamming weight over a finite field [2] and a recent theorem of Carlet [4] on
linear codes of constant Lee weight over the ring ZN . In [17], Shi et al. char-
acterized the structure and properties of one-homogeneous weight linear codes
over Fp[u]/(u

m) and obtained a class of optimal p-ary one-Hamming weight
linear codes from one-homogeneous weight linear codes by using the Gray map
given in [17]. In this paper, we present an explicit construction of constant
weight codes over a finite chain ring.

The organization of this paper is as follows: In Section 2, we give some basic
notions and definitions. We also state a distance-preserving map given in [7]

and called the Gray map from Rn to F
pl(e−1)n

pl
, where R is a finite chain ring,

Fpl is the residue field of R with pl elements and e is the nilpotency index of
R. In Section 3, we determine the structures of one-homogeneous weight codes
over finite chain rings and study their properties. Yet in this paper, different
from [17], we provide a different approach which leads to richer families of one-
homogeneous weight codes from the generator matrix of a one-homogeneous
weight code presented in Theorem 3.5. By the Gray map, we obtain a class
of optimal one-Hamming weight q-ary linear codes which meet the Griesmer
bound over Fpl . In Section 3, we give some examples by taking k = 1 to
illustrate that we derive more optimal one-Hamming weight p-ary linear codes
over R = Fpk [u]

/

(us) than the study in [17]. Finally, we conclude this paper
in Section 4.

2. Preliminaries

Throughout this paper, rings are commutative rings with identity 1 6= 0.
An ideal I of a ring R is said to be principal if it is generated by a single ring
element. We say R is a principal ideal ring if every ideal of R is principal. A
ring R with a unique maximal ideal is called a local ring. Moreover, a ring
R is called a chain ring if its lattice of ideals forms a chain, i.e., its ideals are
linearly ordered with respect to set inclusion.

Let R be a finite chain ring and let γ be a generator of the maximal ideal
of R. It is well known that the characteristic of a finite chain ring is a positive
power of the characteristic of its residue field. So, R/ (γ) is called the residue
field of R having pl elements, where p is a prime and l ≥ 1. The ideals of R
are as follows:

(0) = (γe) ⊂
(

γe−1
)

⊂ · · · ⊂ (γ) ⊂
(

γ0
)

= R,

where e is the nilpotency index of R. Let Fpl be a field of pl elements. We
state the Lemma 2.4 in [13].
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Proposition 2.1 ([13]). Let V be a maximal subset of R and γ be a generator

of maximal ideal of R with the property that x1 6= x2 mod (γ) for all x1, x2 ∈ R

such that x1 6= x2. Then,

(1) for all x ∈ R, there are unique x0, x1, . . . , xe−1 ∈ V such that x =
x0 + x1γ + · · ·+ xe−1γ

e−1;

(2)
∣

∣γjR
∣

∣ =
∣

∣Fpl

∣

∣

e−j
for 0 ≤ j ≤ e.

By Proposition 2.1, it is clear that if j = 0, then |R| =
∣

∣γ0R
∣

∣ =
∣

∣ Fpl

∣

∣

e−0
=

ple. Also, any element x ∈ Rn can be written uniquely as

(1) x = x0 + x1γ + · · ·+ xe−1γ
e−1,

where xi = (xi,0,xi,1, . . . ,xi,n−1) ∈ V n for all i ∈ {0, 1, . . . , e− 1}. Let Γ
denote the natural map from R to F

n
pl

such that

Γ (xi) = (Γ (xi,0) ,Γ (xi,1) , . . . ,Γ (xi,n−1)) .

A code C of length n is a nonempty subset of Rn. A linear code C of length
n over R is a R-submodule of Rn. It is given in [13] that any code C of length
of n over R is permutation-equivalent to a code with the following generator
matrix:

(2) G =













Ik1
A11 A12 A13 · · · A1,e−1 A1,e

0 γIk2
γA22 γA23 · · · γA2,e−1 γA2,e

0 0 γ2Ik3
γ2A33 · · · γ2A3,e−1 γ2A3,e

. . . . · · · . .

0 0 0 0 · · · γe−1Ike
γe−1Ae,e













,

where Iki
is ki× ki identity matrix and Ai,j ’s are matrices over R for all i, j ∈

{1, 2, . . . , e}. A code having a generator matrix in this form has
(

pl
)

e−1
∑

i=0

(e−i)ki+1

elements and C is said to be of type 1k1

(

pl
)k2

· · ·
(

pl(e−1)
)ke

.
The Hamming weight wH (x) of a codeword x = (x1, . . . , xn) ∈ F

n
q is

the number of nonzero components and the Hamming distance between the
codewords x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined as dH (x, y) =
wH (x− y).

In [6], the homogeneous weight of an element x of R in the sense of [5] is
defined as follows:

(3) whom (x) =







pl(e−1), x ∈
(

γe−1
)

\ {0} ,

pl(e−2)
(

pl − 1
)

, x ∈R \
(

γe−1
)

,

0, otherwise.

The homogeneous weight can be extended to Rn componentwisely. Then, the
homogeneous weight of x = (x0, x1, . . . , xn−1) ∈ Rn becomes

(4) whom (x) =

n−1
∑

i=0

whom (xi) .
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Also, the homogeneous distance between x = (x0, x1, . . . , xn−1) and y =
(y0, y1, . . . , yn−1) in Rn is defined in [5] as follows:

dhom (x, y) = whom (x− y) .

By the following definition in [7], we present the Gray map from Rn to

F
pl(e−1)

pl
:

Every element ǫ ∈ Zpl can be viewed as ǫ = ν0 (ǫ)+ν1 (ǫ) p+· · ·+νl−1 (ǫ) p
l−1,

where νi (γ) ∈ {0, 1, . . . , p− 1} for all 0 ≤ i ≤ l − 1. Let α be a primitive
element of Fpl . Then, the corresponding element to every ǫ ∈ Zpl is given

by αǫ := ν0 (ǫ) + ν1 (ǫ)α+ · · ·+ νl−1 (ǫ)α
l−1. Also, an element ω ∈ Zpl(e−1)

can be written as the pl−adic representation w = ν
0
(w) + ν

1
(w) pl + · · · +

ν
e−2

(w) pl(e−2) , where νi (w) ∈ 0, 1, . . . , pl−1 for every 0 ≤ i ≤ e − 2. The

Gray map ϕ : Rn → F
pl(e−1)n

pl
is defined by ϕ (x) =

(

a0, a1, . . . , apl(e−1)n−1

)

, for

all xi = x0,i + x1,iγ + · · ·+ xe−1γ
e−1, i ∈

{

0, 1, . . . , pl(e−1)n− 1
}

, where

(5) a(wpl+ε)n+j = Γ (xe−1,j) +

(

e−1
∑

l=1

αν̄l−1(w)Γ (xl,j)

)

+ αεΓ (x0,j)

for all 0 ≤ w ≤ pl(e−2) − 1, 0 ≤ ǫ ≤ pl − 1 and 0 ≤ j ≤ n− 1.

Theorem 2.2 ([7]). The Gray map ϕ is an isometry from (Rn, dhom) to
(

F
pl(e−1)n

pl
, dH

)

, where dH denotes the Hamming distance on F
pl(e−1)n

pl
.

It is well known that [n, k, d]q refers to a linear code of length n and minimum

distance d over Fq, where q = pl, p is a prime and l ≥ 1. Recall that Aq (n, d) is
the maximum size of a code C having length n and minimum distance d. The
number Aq (n, d) is very important in coding theory. We state the well known
Griesmer bound which applies specifically to linear codes.

Lemma 2.3 ([9]). Let C be a q-ary code of parameters [n, k, dH ]q, where k ≥ 1.
Then

(6) n ≥

k−1
∑

i=0

⌈

dH

qi

⌉

.

Note that if a linear code C over a finite field Fq meets the Griesmer bound,
then C is called optimal.

3. One-homogeneous weight codes over finite chain rings

Throughout rest of the this paper, we denote Ck1,...,ke
as a code with type

1k1

(

pl
)k2

· · ·
(

pl(e−1)
)ke

and we take R as a finite chain ring with residue field
Fpl and nilpotency index e. The characterization of one-Hamming weight linear
codes is studied in [3, 11] and [14]. According to [14], we can give the following
proposition.
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Proposition 3.1 ([14]). Let C be a linear code of length n over Fq, where

q = pl, p is a prime and l ≥ 1. If for each i ∈ {1, . . . , n} there exists a codeword

c = (c1, . . . , cn) ∈ C such that ci 6= 0, then
∑

c∈C

wH (c) =
(

pl − 1
)

|C|n/pl.

By making use of Proposition 3.1, we can derive the sum of the homogeneous
weights of all codewords of a linear code C over R.

Theorem 3.2. Let C be a linear code of length n over R. If for each i ∈
{1, . . . , n} there exists a codeword c = (c1, . . . , cn) ∈ C such that ci 6= 0, then
∑

c∈C

whom (c) = pl(e−2)
(

pl − 1
)

|C| n.

Proof. Consider the |C| × n array of all codewords in C. Then, each column
corresponds to one of the following cases:

• the column contains x1, x2, . . . , xple equally often, where xi ∈ R and

xi 6= xj if i 6= j, i, j ∈
{

1, . . . , ple
}

.
• the column contains x1, x2, . . . , xpl(e−1) equally often, where xi ∈ γR

and xi 6= xj if i 6= j, i, j ∈
{

1, . . . , pl(e−1)
}

.
...

• the column contains x1, x2, . . . , xp2l equally often, where xi ∈ γe−2R

and xi 6= xj if i 6= j, i, j ∈
{

1, . . . , p2l
}

.

• the column contains x1, x2, . . . , xpl equally often, where xi ∈ γe−1R

and xi 6= xj if i 6= j, i, j ∈
{

1, . . . , pl
}

.

Let N1 be the number of columns which corresponds to the first case and let
N2 be the number of columns which corresponds to the second case. Similarly,
let Ne be the number of columns which corresponds to the e-th case. Note that
∑e

i=1 Ni = n. Therefore we can conclude that
∑

c∈C

whom (c)

= |C|

e
∑

i=1

Ns

pl(e−i+1)

[

pl(e−1)
(

pl − 1
)

+ pl(e−2)
(

pl − 1
)

(

pl(e−i+1) − pl
)]

= pl(e−2)
(

pl − 1
)

|C|

e
∑

i=1

Ni

= pl(e−2)
(

pl − 1
)

|C|n.
�

Proposition 3.3. Let Ck1,...,ke
be a linear code of length n over R. If the

columns of the generator matrix G(k1+···+ke)×n are all distinct nonzero vectors



c1, . . . , ck1
, ck1+1, . . . , ck1+k2

, . . . , c
1+

e−1
∑

i=1

ki

, . . . , c e
∑

i=1

ki





⊤

,
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where ci1 ∈ R for all i1 ∈ {1, . . . , k1}, ci2 ∈ (γ) for all i2∈{k1 + 1, . . . , k1 + k2},

. . ., and cie ∈
(

γe−1
)

for all ie ∈
{

1 +
∑e−1

i=1 ki, . . . ,
∑e

i=1 ki

}

, then Ck1,...,ke
is

a one-homogeneous weight code with nonzero weight

w0 = pl(e−2)
(

pl − 1
)

|Ck1,...,ke
|

and n = |Ck1,...,ke
| − 1.

Proof. Without loss of generality, we let k1 6= 0. Consider a column of the
generator matrix such that first entry differs from zero. Let a be the first entry
of the column. Observe that the number of such columns with the first entry a

is exactly
(

pl
)e(k1−1)(

pl
)

e−1
∑

i=1

(e−i)ki+1

. Note that the length of the code equals
to the number of columns of the generator matrix. Since a runs through all
elements of the ring and there is no zero column, the number of columns is

ple





(

pl
)e(k1−1)(

pl
)

e−1
∑

i=1

(e−i)ki+1



− 1 = |Ck1,...,ke
| − 1 = n.

Observe that the rows consisting of only the elements of the ideal
(

γi
)

contain

equally often the elements of the ideal
(

γi
)

for all i = 0, . . . , e− 1 due to the
construction nature of the generator matrix. Then the homogeneous weight of
a row consisting of only the elements of the ideal

(

γi
)

for all i = 0, . . . , e− 1 is

|Ck1,...,ke
|

pl
(e−i)

(

pl(e−1)
(

pl − 1
)

+
(

pl(e−i) − pl
)

(

pl − 1
)

pl(e−2)
)

= |Ck1,...,ke
|
(

pl − 1
)

pl(e−2)

(

pl

pl
(e−i)

+
pl(e−i) − pl

pl
(e−i)

)

= |Ck1,...,ke
|
(

pl − 1
)

pl(e−2).

Therefore, the homogeneous weight of the rows of the generator matrix does
not depend on i.

To complete the proof, it remains to show that all codewords of the linear
code Ck1,...,ke

have the same weight w0 = pl(e−2)
(

pl − 1
)

|Ck1,...,ke
|. Set t =

e
∑

i=1

ki and define the map σ from Rk1 × (γ)
k2 × · · · ×

(

γe−1
)ke

to R by

σ



x1, . . . , xk1
, xk1+1, . . . , xk1+k2

, . . . , x
1+

e−1
∑

i=1

ki

, . . . , x e
∑

i=1

ki



 =

t
∑

i=1

cixi,

where ci ∈ R for all i ∈ {1, . . . , t}. Observe that σ is an R-module homo-
morphism and so it is clear that Imσ =

(

γi
)

for some i ∈ {0, 1, . . . , e}. Since
there is no zero column of the generator matrix G(k1+···+ke)×n, this is possible

only when ci = 0 for all i then Imσ = (γe) = {0}. Since Rk1 × (γ)k2 × · · · ×
(

γe−1
)ke

/Kerσ ∼= Imσ =
(

γi
)

, each residue class of Rk1 ×(γ)
k2 ×· · ·×

(

γe−1
)ke
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with respect to mod Kerσ corresponds to a distinct element of the ideal
(

γi
)

.
Then, it is not difficult to see that any codeword of the linear code Ck1,...,ke

has exactly
|Rk1 ||(γ)k2 |···

∣

∣

∣(γe−1)ke
∣

∣

∣

|(γi)| times the nonzero elements of the ideal
(

γi
)

.

Note that
∣

∣Rk1

∣

∣

∣

∣

∣
(γ)

k2

∣

∣

∣
· · ·
∣

∣

∣

(

γe−1
)ke

∣

∣

∣
= |Ck1,...,ke

|. Hence, by the above obser-

vation, the proof is completed. �

Theorem 3.4. Let Ck1,...,ke
be a one-homogeneous weight code over R of length

n and constant weight w0. Then, there exists a positive integer π such that

n = π
|Ck1,...,ke

|−1

pl
−1

and w0 = πpl(e−2) |Ck1,...,ke
|.

Proof. By Theorem 3.2, we write

pl(e−2)
(

pl − 1
)

|Ck1,...,ke
|n = w0 (|Ck1,...,ke

| − 1) .

Since

(

pl(e−2) |Ck1,...,ke
| ,

|Ck1,...,ke
|−1

pl
−1

)

= 1, we conclude that there exists a

positive integer π such that n = π
|Ck1,...,ke

|−1

pl
−1

and w0 = πpl(e−2) |Ck1,...,ke
|. �

Theorem 3.4 says that it is possible to derive more one-homogeneous
weight codes from one-homogeneous weight code with the generator matrix
G(k1+···+ke)×n given in Proposition 3.3. Before giving a method to derive more
one-homogeneous weight codes from the one-homogeneous weight code having
the generator matrixG(k1+...+ke)×n as in Proposition 3.3, we state the following
definition.

Definition. Let n be a nonnegative integer and let A be any matrix. Then,

An = (A| A| · · · |A
︸ ︷︷ ︸

n-times

).

Theorem 3.5. Let π = t
pl
−1 , where t =

∑pl

−1
i=1 ni and ni is nonnegative integer

for all i = 1, . . . , pl − 1. Then, there exists a family of one-Hamming weight

codes over Fpl with the parameters
[

π (|Ck1,...,ke
| − 1) pl(e−1),

e−1
∑

i=0

(e− i) ki+1, π |Ck1,...,ke
|
(

pl − 1
)

pl(e−2)

]

pl

.

Proof. Take Ck1,...,ke
as a code having the generator matrix G(k1+···+ke)×n in

Proposition 3.3 over R. Then, Ck1,...,ke
is a one-homogeneous weight code

over R of length |Ck1,...,ke
| − 1. Observe that pl − 1 divides both the length

|Ck1,...,ke
| − 1 and the numbers of nonzero elements in each ideal of R. In

this case, we can partition the rows of the generator matrix G(k1+···+ke)×n into

pl − 1 equal parts such that all parts have the same number zero divisors and
units and they split each ideal as well. Let A1, A2, . . . , Apl

−1 be all parts of the
generator matrix G(k1+···+ke)×n. It is easy to see that each part Ai generates a
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one-homogeneous weight code over R of length
|Ck1,...,ke

|−1

pl
−1

and of the nonzero

weight
|Ck1,...,ke

|(pl

−1)pl(e−2)

pl
−1 . Let Ĉk1,...,ke

be a code with a generator matrix

Ĝ given by

(An1

1 | An2

2 | · · · |A
n
p
l−1

pl
−1

),

where ni’s are nonnegative integers for all i = 1, . . . , pl − 1. Then, Ĉk1,...,ke

is a one-homogeneous weight code over R of length π (|Ck1,...,ke
| − 1) and of

nonzero weight π |Ck1,...,ke
|
(

pl − 1
)

pl(e−2). Hence, by the Gray map ϕ, we
obtain a family of one-Hamming weight codes over Fpl with the parameters as
desired. �

Theorem 3.6. The codes having the parameters given in Theorem 3.5 are

optimal.

Proof. For the proof, it is enough to show that they attain the Griesmer bound.

Let x =
∑e−1

i=0 (e− i) ki+1 and a =
∑pl

−1
i=1 ni. Observe that

|Ck1,...,ke
| = plx

and

π |Ck1,...,ke
|
(

pl − 1
)

pl(e−2) = apl(e+x−2).

Then
x−1
∑

i=0

⌈

apl(e+x−2)

(pl)
i

⌉

= apl(e+x−2) + apl(e+x−3) + · · ·+ apl(e−1)

= apl(e−1)
(

pl(x−1) + pl(x−2) + · · ·+ 1
)

=
apl(e−1)

(

plx − 1
)

pl − 1

= π (|Ck1,...,ke
| − 1) pl(e−1)

= n. �

Now we present some examples that illustrate the findings of the previous
results.

Example 3.7. Let Ck1=1,k2=1 be a code over the ring F2 [u] /
(

ξ (u)
2
)

, where

ξ (u) is an irreducible polynomial over F2 [u] of degree 2. Suppose that

Ck1=1,k2=1

has the generator matrix G = (G1| G2|G3), where

G1 =

(

0 ξ (u)+uξ (u) 1 1+ ξ (u) 1+ uξ (u) u+ ξ (u)+uξ (u)
ξ (u) Gβ Gβ Gβ Gβ Gβ

)

,

G2 =

(

0 uξ (u) u u+ ξ (u) 1+ u+ uξ (u)
uξ (u) Gβ Gβ Gβ Gβ

1+ u+ ξ (u)+uξ (u)
Gβ

)

,
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Table 1. An infinite family of optimal one-Hamming weight
codes obtained by the Gray map.

n1 n2 n3 ϕ (Ck1=1,k2=1)

1 0 0 [84, 3, 64]4
1 1 0 [168, 3, 128]4
1 1 1 [252, 3, 192]4
2 1 1 [336, 3, 256]4
2 2 1 [420, 3, 320]4
2 2 2 [504, 3, 384]4
3 2 2 [588, 3, 448]4
...

...
...

...

G3 =

(

0 ξ (u)
ξ (u) + uξ (u) Gβ

1+ u 1+ u+ ξ (u) u+ uξ (u)
Gβ Gβ Gβ

1+ ξ (u)+uξ (u)
Gβ

)

,

and Gβ =
(

0 ξ (u) uξ (u) ξ (u) + uξ (u)
)

. According to Proposition 3.3,

Ck1=1,k2=1 is a one-homogeneous weight code over the ring F2 [u] /
(

ξ (u)
2
)

of length n = 63 and nonzero weight w0 = 192. By Theorem 3.5, it is seen
that the each of the parts G1, G2 and G3 generate a one-homogeneous weight

code over the ring F2 [u] /
(

ξ (u)
2
)

of length n = 31 and nonzero weight w0 =

64. Moreover, a code having the generator matrix (Gn1

1 | Gn2

2 |Gn3

3 ) is a one-
homogeneous weight code. Hence, by Gray map ϕ, we can obtain more one-
Hamming weight codes over F4 with respect to n1, n2 and n3, some of which
parameters are given in Table 1.

Example 3.8. Let Ck1=1,k2=2 be a code over Z9 with the generator matrix
G = (G1|G2), where

G1=

(

0 3 1 2 4

Gα1
Gβ Gβ Gβ Gβ

)

, G2=

(

0 6 5 7 8

Gα2
Gβ Gβ Gβ Gβ

)

,

where

Gα1
=

(

0 3 3 3
3 0 3 6

)

, Gα2
=

(

0 6 6 6
6 0 3 6

)

and

Gβ =

(

0 0 0 3 3 3 6 6 6
0 3 6 0 3 6 0 3 6

)

.

According to Proposition 3.3, Ck1=1,k2=2 is a one-homogeneous weight code
over Z9 of length n = 80 and nonzero weight w0 = 162. By Theorem 3.5, it
is seen that each of the parts G1 and G2 generate a one-homogeneous weight
code over Z9 of length n = 40 and nonzero weight w0 = 81. Also, a code having
the generator matrix (Gn1

1 |Gn2

2 ) is a one-homogeneous weight code over Z9.
Hence, by the Gray map ϕ, we can obtain more one-Hamming weight codes
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Table 2. An infinite family of optimal one-Hamming weight
codes obtained by the Gray map.

n1 n2 ϕ (Ck1=1,k2=2)

1 0 [120, 4, 81]3
1 1 [240, 4, 162]3
2 1 [360, 4, 243]3
2 2 [480, 4, 324]3
3 2 [600, 4, 405]3
3 3 [720, 4, 486]3
4 3 [840, 4, 567]3
...

...
...

over Z3 with respect to n1and n2, some of which parameters are given in Table
2.

In the following two examples, we illustrate that Theorem 3.5 is a refinement
of Theorem 3.6 in [17].

Example 3.9. Let Ck1=1,k2=1 be a code over the ring F5 [u] /
(

u2
)

with the
generator matrix G = (G1|G2 |G3 |G4 ), where

G1 =

(

0 u 1 2 3 4 1+ u

u Gα Gα Gα Gα Gα Gα

)

,

G2 =

(

0 2u 2+ u 3+ u 4+ u 1+ 2u 2+ 2u

2u Gα Gα Gα Gα Gα Gα

)

,

G3 =

(

0 3u 3+ 2u 4+ 2u 1+ 3u 2+ 3u 3+ 3u

3u Gα Gα Gα Gα Gα Gα

)

,

G4 =

(

0 4u 4+ 3u 1+ 4u 2+ 4u 3+ 4u 4+ 4u

4u Gα Gα Gα Gα Gα Gα

)

,

and Gα =
(

0 u 2u 3u 4u
)

. According to Proposition 3.3, Ck1=1,k2=1

is a one-homogeneous weight code over the ring F5 [u] /
(

u2
)

of length n = 124
and nonzero weight w0 = 500. By Theorem 3.5, it is seen that each of the
parts G1, G2, G3 and G4 generate a one-homogeneous weight code over the
ring F5 [u] /

(

u2
)

of length n = 31 and nonzero weight w0 = 125. Moreover, a
code having the generator matrix (Gn1

1 |Gn2

2 |Gn3

3 |Gn4

4 ) is a one-homogeneous
weight code over the ring F5 [u] /

(

u2
)

. Hence, by the Gray map ϕ, we can
obtain more one-Hamming weight codes over F5 with respect to n1, n2 and n3,
some of which parameters are given in Table 3.

Example 3.10. Let Ck1=1,k2=0,k3=0 be a code over the ring F7 [u] /
(

u3
)

with
the generator matrix G = (G1|G2 |G3 |G4 |G5 |G 6 ), where each of Gi is a

row matrix and has exactly one nonzero element from minimal ideal
(

u2
)
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Table 3. An infinite family of optimal one-Hamming weight
codes obtained by the Gray map.

n1 n2 n3 n4 ϕ (Ck1=1,k2=1)

1 0 0 0 [155, 3, 125]5
1 1 0 0 [310, 3, 250]5
1 1 1 0 [465, 3, 375]5
1 1 1 1 [620, 3, 500]5
2 1 1 1 [775, 3, 625]5
2 2 1 1 [930, 3, 750]5
2 2 2 1 [1085, 3, 875]5
2 2 2 2 [1240, 3, 1000]5
...

...
...

...
...

Table 4. An infinite family of optimal one-Hamming weight
codes obtained by the Gray map.

n1 n2 n3 n4 n5 n6 ϕ (Ck1=1,k2=0,k3=0)

1 0 0 0 0 0 [2793, 3, 2401]7
1 1 0 0 0 0 [5586, 3, 4802]7
1 1 1 0 0 0 [8379, 3, 7023]7
1 1 1 1 0 0 [11172, 3, 9604]7
1 1 1 1 1 0 [13965, 3, 12005]7
1 1 1 1 1 1 [16758, 3, 14406]7
2 1 1 1 1 1 [19551, 3, 16807]7
2 2 1 1 1 1 [22344, 3, 19208]7
2 2 2 1 1 1 [25137, 3, 21609]7
2 2 2 2 1 1 [27930, 3, 24010]7
...

...
...

...
...

...
...

and the same number nonzero element from each of ideal (u) and (1). Ac-
cording to Proposition 3.3, Ck1=1,k2=0,k3=0 is a one-homogeneous weight code
over the ring F7 [u] /

(

u3
)

of length n = 342 and of nonzero weight w0 =
14406. By Theorem 3.5, it is seen that each of the parts Gi generates a
one-homogeneous weight code over the ring F7 [u] /

(

u3
)

of length n = 57
and of nonzero weight w0 = 2401. Also, a code having the generator ma-
trix (Gn1

1 |Gn2

2 |Gn3

3 |Gn4

4 |Gn5

5 |Gn6

6 ) is a one-homogeneous weight code over

the ring F7 [u] /
(

u3
)

. Hence, by the Gray map ϕ , we can obtain more one-
Hamming weight codes over F7 with respect to n′

is, some of which parameters
are given in Table 4.
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4. Conclusion

We study the structures and the algebraic properties of linear codes of
constant-weight over finite chain rings and we present some explicit construc-
tions of constant weight codes over finite chain rings and their residue fields.
By the Gray map, we derive a family of optimal one-Hamming weight codes
over the residue field. Moreover, by the proposed generalized method, we
derive more optimal one-Hamming weight p-ary linear codes over the ring
R = Fpk [u]

/

(us) than previously obtained by Shi et al. in [17] .
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