JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 4, June 1991

Isometries of a Subalgebra of $C^{(1)}[0,1]$

YANG-HI LEE

ABSTRACT. By $C^{(1)}[0,1]$ we denote the Banach algebra of complex valued continuously differentiable functions on [0,1] with norm given by

$$||f|| = \sup_{x \in [0,1]} (|f(x)| + |f'(x)|) \text{ for } f \in C^{(1)}.$$

By A we denote the subalgebra of $C^{(1)}$ defined by

...

$$A = \{ f \in C^{(1)} : f(0) = f(1) \text{ and } f'(0) = f'(1) \}.$$

By an isometry of A we mean a norm-preserving linear map of A onto itself.

The purpose of this article is to describe the isometries of A. More precisely, we show tht any isometry of A is induced by a point map of the interval [0,1] onto itself.

The isometries of $C^{(1)}$ are determined by M. Cambern [1]. V.D. Pathak [3] have also determined the isometries of $C^{(n)}$, with norm given by

$$||f|| = \sup_{x \in [0,1]} \sum_{r=0}^{n} \frac{|f^{(r)}(x)|}{r!}.$$

In the proof we shall follow the techniques of [1] and [3].

DEFINITION 1: We define a function d from $[0,1] \times [0,1]$ into [-1/2, 1/2) by d(x,y) = x - y - [x - y + 1/2] and identify 0 with 1 then there exists a topology κ of [0,1] induced by a metric |d|. Denote $[0,1]_{\kappa}$ for the topological space [0,1] with the topology κ . For $x \in [0,1]_{\kappa}$ define f'(x) by

$$f'(x) = \begin{cases} \lim_{d(y,x)\to 0} \frac{f(y) - f(x)}{d(y,x)} & \text{if } f: [0,1]_{\kappa} \to C\\ \\ \lim_{d(y,x)\to 0} \frac{d(f(y) - f(x))}{d(y,x)} & \text{if } f: [0,1]_{\kappa} \to [0,1]_{\kappa}. \end{cases}$$

Received by the editors on 3 June 1991.

1980 Mathematics subject classifications: Primary 46.

By $C^{(1)}[0,1]_{\kappa}$ we denote the Banach algebra of complex valued continuously differentiable functions on $[0,1]_{\tau}$ into C with norm given by

$$||f|| = \sup_{x \in [0,1]_{\kappa}} (|f(x)| + |f'(x)|) \quad \text{for} \quad f \in C^{(1)}[0,1]_{\kappa}.$$

By the identity function from [0, 1] onto $[0, 1]_{\kappa}$ we can identity Banach algebra A with $C^{(1)}[0, 1]_{\kappa}$. We prove the following propositions.

PROPOSITION 2. Given $x \in [0,1]_{\kappa}$, $\theta \in [-\pi,\pi]$, then there exists $h \in C[0,1]_{\kappa}$ such that

$$|h(x)| + |h'(x)| > |h(y)| + |h'(y)|$$

for $y \in [0,0]_{\kappa}$, $x \in [0,1]_{\kappa}$, $y \neq x$, with |h(x)| = h(x) > 0, $|h'(x)| = e^{i\theta}h(x) > 0$.

PROOF: Let f_0 be the real valued, nonnegative continuous function on $[0, 1]_{\kappa}$ defined as follows

$$f_0(y) = \begin{cases} \frac{3}{4}d(y,x) + \frac{1}{8} & \dots - \frac{1}{2} \le d(x,y) \le -\frac{1}{6} \\ 3d(y,x) + \frac{1}{2} & \dots - \frac{1}{6} \le d(x,y) \le 0 \\ -3d(y,x) + \frac{1}{2} & \dots 0 \le d(x,y) \le \frac{1}{6} \\ -\frac{3}{4}d(y,x) + \frac{1}{8} & \dots \frac{1}{6} \le d(x,y) \le \frac{1}{2}. \end{cases}$$

Define $g(y) = \int_x^y f_0(t) dt$. It can be easily verified that g(y) is as follows;

$$g(y) = \begin{cases} \frac{1}{32}(6d(y,x)-1)(2d(y,x)+1) & \cdots -\frac{1}{2} \le d(x,y) \le -\frac{1}{6} \\ \frac{1}{2}(3d(y,x)+1)d(y,x) & \cdots -\frac{1}{6} \le d(x,y) \le 0 \\ -\frac{1}{2}(3d(y,x)-1)d(y,x) & \cdots 0 \le d(x,y) \le \frac{1}{6} \\ -\frac{1}{32}(6d(y,x)+1)(2d(y,x)-1) & \cdots \frac{1}{6} \le d(x,y) \le \frac{1}{2}. \end{cases}$$

62

Therefore $g \in C[0,1]_{\kappa}$ and $g' = f_0$. Thus

$$g(x) = 0, \quad g'(x) = \frac{1}{2}$$

 $|g(x)| + |g'(x)| = \frac{1}{2}$

Now consider |g(y)| + |g'(y)| for $y \in [0,1]_{\kappa}$ and $y \neq x$.

$$|g(y)| + |g'(y)| = \begin{cases} -\frac{3}{8}d(y,x)^2 - \frac{7}{8}d(y,x) - \frac{3}{32} < \frac{1}{2} & \dots - \frac{1}{2} \le d(x,y) \le -\frac{1}{6} \\ -\frac{3}{2}d(y,x)^2 + \frac{5}{2}d(y,x) + \frac{1}{2} < \frac{1}{2} & \dots - \frac{1}{6} \le d(x,y) < 0 \\ -\frac{3}{2}d(y,x)^2 - \frac{5}{2}d(y,x) + \frac{1}{2} < \frac{1}{2} & \dots 0 < d(x,y) \le \frac{1}{6} \\ -\frac{3}{8}d(y,x)^2 + \frac{7}{8}d(y,x) - \frac{3}{32} < \frac{1}{2} & \dots \frac{1}{6} \le d(x,y) \le \frac{1}{2}. \end{cases}$$

From this it follows that the function $h \in C[0,1]_{\kappa}$ defined by $h(y) = 1 + e^{i\theta}g(y)$ has the desired properties.

If X is any compact Hausdorff space, we will denote by C(X) the Banach algebra of continuous complex functions defined on X with the norm $\| \|_{\infty}$ determined by $\|g\|_{\infty} = \sup_{x \in X} |g(x)|$ for $g \in C(X)$. Now let W denote the compact space $[0,1] \times [-\pi,\pi]$, given $f \in A$, we define $\tilde{f} \in C(W)$ by

$$\tilde{f}(x,\theta) = f(x) + e^{i\theta}f'(x) \qquad (x,\theta) \in W.$$

The following lemma is then obvious.

LEMMA 3. The mapping $f \to \tilde{f}$ establishes a linear and norm preserving correspondence between A and the closed subspace S of C(W), $S = \{\tilde{f} : f \in A\}.$

Next given $(x, \theta) \in W$, we define a continuous linear functional $L_{(x,\theta)}$ on A by

$$L_{(x,\theta)}(f) = f(x,\theta), \qquad f \in A.$$

In view of Proposition 2 the proof of the following lemma is analogous to the proof of Lemma 1.2 in [1].

LEMMA 4. If an element f^* of A^* is an extreme point of the unit ball U^* of A^* then f^* is of the form $e^{i\eta}L_{(x,\theta)}$ for some $\eta \in [-\pi,\pi]$, $(x,\theta) \in W$.

We now suppose that T is an isometry of A. The adjoint T^* is then an isometry of A^* , and thus carries extreme points of U^* onto itself.

LEMMA 5. The image by T of the constant function 1 of A is a constant function $e^{i\lambda}$, $\lambda \in [-\pi, \pi]$.

PROOF: For each extreme point $e^{i\eta}L_{(x,\theta)}$ of U^* ,

$$|(e^{i\eta}L_{(x,\theta)})(1)|=1.$$

Thus for each extreme point $T^*(e^{i\eta}L_{(x,\theta)})(1)| = 1$. Therefore, $|(L_{(x,\theta)})(T(1))| = 1$. Thus for a fixed x, $|(T(1))(x)+e^{i\theta}(T(1))'(x)| = 1$ for all $\theta \in [-\pi,\pi]$. Choosing θ so that

$$\arg((T(1))(x)) = \arg(e^{i\theta}(T(1))'(x))$$

we get

$$|(T(1))(x)| + |(T(1))'(x)| = 1.$$

Again by choosing θ , so that

$$\arg((T(1))(x)) = \pi + \arg(e^{i\theta}(T(1))'(x))$$

we get

$$||(T(1))(x)| - |(T(1))'(x)|| = 1.$$

Thus either

$$\{|(T(1))(x)| = 1 \text{ and } |(T(1))'(x)| = 0\}.$$

or

(1)
$$\{|(T(1))(x)| = 0 \text{ and } |(T(1))'(x)| = 1\}.$$

Therefore, for any $x \in [0,1]$, |(T(1))(x)| = 1 or |(T(1))(x)| = 0. But since |(T(1))| is a continuous function on [0,1] we have

$$|(T(1))(x)| \equiv 0$$
 or $|(T(1))'(x)| \equiv 1$.

Now $|(T(1))(x)| \equiv 0$ implies that $(T(1))(x) \equiv (T(1))'(x) \equiv 0$ which contradicts (1).

Hence $|(T(1))(x)| \equiv 1$ from which it follows that $(T(1))'(x) \equiv 0$ and hence

 $T(1) \equiv e^{i\lambda}$ for some fixed $\lambda \in [-\pi, \pi]$.

We denote $T^*(L_{(x,\theta)})$ by

 $e^{i\lambda(x,\theta)}L_{(y(x,\theta),\psi_{(x,\theta)})}.$

The above Lemma 4 shows that $\lambda(x,\theta) \equiv \lambda$ for all $\theta \in [-\pi,\pi]$. For

$$T^*(L_{(x,\theta)})(1) = e^{i\lambda(x,\theta)}L_{(y(x,\theta),\psi(x,\theta))}(1),$$

so that $L_{(x,\theta)}(T(1)) = e^{i\lambda(x,\theta)}$ and thus $L_{(x,\theta)}(e^{i\lambda}) = e^{i\lambda(x,\theta)}$. Hence $\lambda(x,\theta) = \lambda$.

LEMMA 6. If $x \in [0,1]_{\kappa}$, then for all $\theta \in [-\pi,\pi]$,

$$y_{(x,\theta)}=y_{(x,0)}.$$

PROOF: For fixed $x \in [0,1]_{\kappa}$, we consider the map $\rho : [-\pi,\pi] \to [0,1]_{\kappa}$ given by

$$\rho(\theta) = y_{(x,\theta)}.$$

Consider the function h of the Proposition 2 constructed for $(y_{(x,\theta)}, \psi_{(x,\theta)})$, then

$$\begin{aligned} \frac{3}{2} |\theta - \theta_1| \\ &\geq |(e^{i\theta} - e^{i\theta_1})| \, \|T(h)\| \\ &\geq |(e^{i\theta} - e^{i\theta_1})(T(h)'(x))| \\ &= |T(h)(x) + e^{i\theta}T(h)'(x) - T(h)(x) - e^{i\theta_1}T(h)'(x)| \\ &= |L_{(x,\theta)}(T(h)) - L_{(x,\theta_1)}(T(h))| \\ &= |T^*(L_{(x,\theta)} - L_{(x,\theta_1)})(h)| \\ &= |h(y_{(x,\theta)}) + e^{i\psi(x,\theta)}h'(y_{(x,\theta)}) - h(y_{(x,\theta_1)}) - e^{i\psi(x,\theta_1)}h'(y_{(x,\theta_1)})| \\ &\geq ||h(y_{(x,\theta)}) + e^{i\psi(x,\theta)}h'(y_{(x,\theta)})| - |h(y_{(x,\theta_1)}) + e^{i\psi(x,\theta_1)}h'(y_{(x,\theta_1)})|| \\ &\geq |\|h\| - \frac{3}{2} + \frac{1}{2}d^2(y_{(x,\theta)}, y_{(x,\theta_1)}) + \frac{3}{2}|d(y_{(x,\theta)}, y_{(x,\theta_1)})|| \\ &= \left|\frac{1}{2}d^2(y_{(x,\theta)}, y_{(x,\theta_1)}) + \frac{3}{2}|d(y_{(x,\theta)}, y_{(x,\theta_1)})|\right| \end{aligned}$$

YANG-HI LEE

for sufficiently small $|\theta - \theta_1|$. Therefore ρ is continuous. Hence the image of $[-\pi, \pi]$ in $[0, 1]_{\kappa}$ is connected subset of $[0, 1]_{\kappa}$. It is in fact singleton. For otherwise we could find g in A such that $g \equiv g' \equiv 0$ on an open interval $I \in \rho([-\pi, \pi])$ while for some $y_{(x,\phi)} \notin [0, 1]_{\kappa}$,

$$|g(y_{(x,\phi)})| < |g'(y_{(x,\phi)})|.$$

For instance, one may take

$$g(y) = \begin{cases} 0 & y \le y_1 \\ (y - y_1)^2 & y_1 \le y \le \frac{1 + 3y_1}{4} \\ -\left(y - \frac{1 + y_1}{2}\right)^2 & \frac{1 + 3y_1}{4} \le y \le \frac{3 + y_1}{4} \\ (y - 1)^2 & \frac{3 + y_1}{4} \le y \le 1 \end{cases}$$

where y_1 is least upper bound of I and $y_{(x,\phi)}$ sufficiently near to y_1 . Thus for an infinite number of $\theta \in [-\pi, \pi]$ with $y_{(x,\theta)} \in I$,

$$L_{(x,\theta)}(T(g)) = T^*(L_{(x,\theta)})(g)| = e^{i\lambda}L_{(y(x,\theta),\psi(x,\theta))}(g) = 0$$

while

$$L_{(x,\phi)}(T(g)) = e^{i\lambda} L_{(y(x,\phi),\psi(x,\phi))}(g) \neq 0.$$

Since ρ is continuous, $\rho^{-1}(I)$ is in $[-\pi, \pi]$ and therefore there exist an infinite number of θ 's such that

(2)
$$L_{(x,\theta)}(T(g)) = 0$$
 while $L_{(x,\phi)}(T(g)) \neq 0$.

Therefore $(T(g))(x) + e^{i\theta}(T(g))'(x) = 0.$

Varying θ we can see that (T(g))'(x) = 0. Thus $L_{(x,\phi)}(T(g)) = 0$ which contradict (2).

Hence $y_{(x,\theta)} = y_{(x,0)}$ for all $\theta \in [-\pi, \pi]$.

Finally we define a point map τ of $[0,1]_{\kappa}$ to $[0,1]_{\kappa}$ by

$$\tau(x)=y_{(x,0)}.$$

Consideration of $(T^{-1})^*$ shows that τ is onto, and, applying Lemma 6, one-one.

THEOREM 7. Let T be an isometry of A. Then, for $f \in A$,

$$(T(f))(x) = e^{i\lambda} f(\tau(x))$$

with $e^{i\lambda} = T(1)$. Moreover, τ is one of the functions F, 1-F where F is the mapping of $[0,1]_{\kappa}$ onto $[0,1]_{\kappa}$ defined by F(x) = x + c - [x+c], $x \in [0,1]_{\kappa}$, $c \in [0,1]_{\kappa}$.

PROOF: Given $x \in [0,1]_{\kappa}$ and $\theta \in [-\pi,\pi]$, consider the function g of the Proposition 2 constructed for (x,θ) . Clearly, g does not depend on θ ; g(x) = 1; g'(x) is positive real and g'(x) > |g'(y)| for all $y \in [0,1]_{\kappa}, y \neq x$. Therefore,

$$\begin{split} \|g\| &= g'(x) \\ &= e^{i\theta} L_{(x,\theta)}(g) \\ &= e^{i\theta} T^* L_{(x,\theta)}(T^{-1}(g)) \\ &= e^{i(\lambda-\theta)} L_{(\tau(x),\psi_{(x,\theta)})}(T^{-1}(g)). \end{split}$$

Thus we have for all $\theta \in [-\pi, \pi]$

(3)
$$||g|| = e^{i(\lambda - \theta)} (T^{-1}(g))(\tau(x)) + e^{i\psi_{(x,\theta)}} (T^{-1}(g))'(\tau(x)).$$

Since

$$||g|| = ||T^{-1}(g)|| = \sup_{y \in [0,1]_{\kappa}} |(T^{-1}(g))(y)|$$

by (3) we have

$$||g|| = |(T^{-1}(g))(\tau(x))| + |(T^{-1}(g))'(\tau(x))|.$$

Again since g is independent of θ ,

$$(T^{-1}(g))(\tau(x)), (T^{-1}(g))'(\tau(x))$$

are independent of θ but

$$A(\theta) = \{ e^{\psi_{(x,\theta)}}(T^{-1}(g))'(\tau(x)) \}$$

YANG-HI LEE

depend on θ for otherwise (3) cannot be true. In other words, $A(\theta)$ is not constant. Now by (3) $A(\theta)$ must be on a circle with center as $\{(T^{-1}(g))(\tau(x))\}$ and radius equal to ||g||.

On the other hand $A(\theta)$ must be on or within the circle with center as origin and radius equal to $\rho = |(T^{-1}(g))'(\tau(x))| = ||g|| - |(T^{-1}(g))(\tau(x))|$. This implies that $(T^{-1}(g))(\tau(x)) = 0$ for otherwise $A(\theta)$ has to be a constant which is false.

Also by (3)

$$||g|| = e^{i(\lambda - \theta + \psi_{(x,\theta)})} (T^{-1}(g))(\tau(x)).$$

Since the left hand side is independent of θ , we have

$$\lambda - \theta + \psi_{(x,\theta)} = \lambda + \psi_{(x,0)}.$$

Hence for all $\theta \in [-\pi, \pi]$,

$$\psi_{(x,\theta)}=\psi_{(x,0)}+\theta.$$

Now f be any element of A such that f(x) = 0 then for all $\theta \in [-\pi, \pi]$

$$\begin{aligned} f'(x) &= e^{i\theta} L_{(x,\theta)}(f) \\ &= e^{i\theta} T^* L_{(x,\theta)}(T^{-1}(f)) \\ &= e^{i(\lambda-\theta)} L_{(\tau(x),\psi_{(x,\theta)})}(T^{-1}(f)) \\ &= e^{i(\lambda-\theta)} [(T^{-1}(f))(\tau(x)) + e^{i\psi_{(x,\theta)}}(T^{-1}(f))'(\tau(x))] \\ &= e^{i\lambda} [e^{-i\theta} (T^{-1}(f))(\tau(x)) + e^{i\psi_{(x,0)}}(T^{-1}(f))'(\tau(x))] \end{aligned}$$

so that $(T^{-1}(f))(\tau(x)) = 0$. For an arbitrary $f \in A$, define g(y) = f(y) - f(x), $y \in [0, 1]$ then g(x) = 0 and so

$$0 = (T^{-1}(g))(\tau(x)) = (T^{-1}(f))(\tau(x)) - f(x)(T^{-1}(1))(\tau(x))$$

= $(T^{-1}(f))(\tau(x)) - e^{-i\lambda}f(x).$

Thus, replacing f by T(f), it follows that for all $x \in [0,1]_{\kappa}$ and $f \in C^{(1)}[0,1]_{\kappa}$,

$$(T(f))(x) = e^{i\lambda} f(\tau(x)).$$

ISOMETRIES OF A SUBALGEBRA OF $C^{(1)}[0,1]$

Now F_0 is the mapping of $[0,1]_{\kappa}$ onto itself given by

$$F_{0}(y) = \begin{cases} 2\left(2y - \tau(x) + \frac{1}{2}\right)^{3} - \left(2y - \tau(x) + \frac{1}{2}\right) \\ + \frac{2\tau(x) + 1}{4} & \cdots & 0 \le y \le \frac{\tau(x)}{2} \\ y & \cdots & \frac{\tau(x)}{2} \le y \le \frac{\tau(x) + 1}{2} \\ 2\left(2y - \tau(x) - \frac{3}{2}\right)^{3} - \left(2y - \tau(x) - \frac{3}{2}\right) \\ + \frac{2\tau(x) + 1}{4} & \cdots & \frac{\tau(x) + 1}{2} \le y \le 1. \end{cases}$$

Therefore

$$(T(F_0))(x) + (T(F_0))'(x) = L_{(x,0)}(T(F_0))$$

= $T^*L_{(x,0)}(F_0)$
= $e^{i\lambda}L_{(\tau(x),\psi_{(x,0)})}(F_0)$
= $e^{i\lambda}[F_0(\tau(x)) + e^{i\psi_{(x,0)}}(F_0)'(\tau(x))]$
= $e^{i\lambda}[\tau(x) + e^{i\psi_{(x,0)}}].$

therefore

$$(T(F_0))'(x) = e^{i(\lambda + \psi_{(x,0)})},$$

 $\tau(x)' = e^{i\psi_{(x,0)}}.$

But since $\tau(x)'$ is real valued and $\tau(x)$ is one to one we have $\tau(x)' \equiv 1$ or $\tau(x)' \equiv -1$ and, therefore $\tau(x) = x + c - [x + c]$ or $\tau(x) = -x + c - [x + c]$.

References

- M. Cambern, Isometries of certain Banach algebras, Studia Mathematica T. XXV (1965), 217-225.
- [2] N. Dunford and J. Schwarz, "Linear Operators(Part I)," New York, 1958.
- [3] V.D. Pathak, Isometries of C⁽ⁿ⁾[0, 1], Pacific J. Math. Vol. 94, No. 1 (1981), 211-222.

Department of Mathematics Education Kongju National Teachers College Kongju, 314-060, Korea 69