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Isometries of a Subalgebra of C(V)[0, 1]

YaNG-H1 LEE

ABSTRACT. By C(1)[0,1] we denote the Banach algebra of
complex valued continuously differentiable functions on [0, 1]
with norm given by

Ifll= sup (If(@)|+|f'(2)]) for f € CV).
z€[0,1]

By A we denote the subalgebra of C(1) defined by
A={fec®:f(0) = f(1) and f'(0) = f'(1)}.

By an isometry of A we mean a norm-preserving linear map
of A onto itself.

The purpose of this article is to describe the isometries of
A. More precisely, we show tht any isometry of A is induced
by a point map of the interval [0,1] onto itself.

The isometries of C(!) are determined by M. Cambern [1].
V.D. Pathak [3] have also determined the isometries of C(™), with
norm given by

f(f‘) T
1= sup SN
) z [ ’ ]r—-o
In the proof we shall follow the techniques of [1] and [3].
DEFINITION 1: We define a function d from [0, 1] x [0, 1] into [—1/2,
1/2) by d(z,y) = ¢ —y — [t —y +1/2] and identify 0 with 1 then there
exists a topology « of [0,1] induced by a metric |d|. Denote [0, 1], for
the topological space [0,1] with the topology . For z € [0, 1], define

f'(z) by

fl( ) limd(y,:)—»o —f-(—%)(—y—:—:‘cf-)(—w—) i £:00,1]c > C
(e )0 d(f(ggyjzg(m)) if £:[0,1]x — [0,1]4.
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By C(M[0, 1], we denote the Banach algebra of complex valued con-

by

tinuously differentiable functions on [0,1], into C' with norm given

Il = ,Sap (f @I +If'())) for feCcDo,1]x.

) ~

By the identity function from [0, 1] onto [0, 1], we can identity Banach
algebra A with C()[0, 1]x. We prove the following propositions.

PROPOSITION 2. Given = € [0,1]«, 6 € [—=, 7|, then there exists

h € C[0,1]. such that

[h(2)] + |h'(2)] > A(y)] + B (9)]

for y € [0,0]x, z € [0,1]«, y # z, with |h(z)| = h(z) > 0, |h'(z)| =

e®h(z) > 0.

PROOF: Let f, be the real valued, nonnegative continuous function

on [0, 1], defined as follows

( 3 1 1
- < —=
3d(y,w)+— ---—lsd(w,y)so
— 2 6
fo(y) = < 1 1
“3d(,2)+5 0<dey) <3
3 1 1
-2 Z LI < < =
\ 4d(y,x) + 3 G = d(z,y) <
Define g(y) = [ Y fo(t)dt. It can be easily verified that g(y) is as
follows;
( Li6dy,z) - )2y, 5) +1) - E <d(z,y) < -2
32 y? ( y’ m) ) t 2 — (m’ y) _— —-6-
1 1
5(3d(y, z) + 1)d(y, z) == <d(z,y) <0
— 6
—35@3d(y, z) - 1)d(y, =) 0<d(zy) <z
1 1 1
| ~33(6d(¥,2) +1)(2d(y,2) ~1) ---5 < d(z,y) < 3.
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Therefore g € C[0,1], and ¢' = fo. Thus

g9(z) =0, g¢'(z)= %

N =

lg(z)| + |g'(z)| =

Now consider |g(y)| + |¢'(y)| for y € [0,1], and y # z.

l9(¥)l +19'(v)]
' —gd(y,xy - %d(y,x) - 332 < -;- —% < d(z,y) < —é-
) —%d(y,:c? +§d(y,x)+% < % —% < d(a:,y)1< 0
~Sdy,o) - Sdw,e) 45 <5 0<dey) <3
‘ —gd(y,x)z + %d(y,z) - 3—?; < % % < d(z,y) < %

From this it follows that the function h € C[0,1], defined by h(y) =
1+ €*%g(y) has the desired properties.

If X is any compact Hausdorff space, we will denote by C(X) the
Banach algebra of continuous complex functions defined on X with
the norm || ||c determined by ||g]|cc = sup |g(z)] for g € C(X). Now

z€X

let W denote the compact space [0, 1] X [, 7], given f € A, we define
feC(W) by

f(z,6) = f(a) +“f'(z)  (a,6) € W.
The following lemma is then obvious.

LEMMA 3. The mapping f — f establishes a linear and norm pre-
serving correspondence between A and the closed subspace S of C(W),

S={f:feA}.
Next given (z,6) € W, we define a continuous linear functional
L(z,4) on A by
L(z,e)(f) = f(m,G), f € A.

In view of Proposition 2 the proof of the following lemma is analogous
to the proof of Lemma 1.2 in [1].



64 ' YANG-HI LEE

LEMMA 4. If an element f* of A* is an extreme point of the unit
ball U* of A* then f* is of the form e*"L(, gy for some n € [—, ],
(z,0) e W.

We now suppose that T is an isometry of A. The adjoint T* is then
an isometry of A*, and thus carries extreme points of U* onto itself.

LEMMA 5. The image by T of the constant function 1 of A is a
~ constant function e'*, X € [~ 7].

PROOF: For each extreme point ei"L(,;,g) of U*,
(€™ Lz,0))(1)] = 1.

Thus for each extreme point T*(ei"L(z,e))(1)| = 1. Therefore,
|(L(z,0))(T(1))| = 1. Thus for a fixed z, |(T(1))(z)+e**(T(1))'(z)| =1
for all § € [—m,n]. Choosing 6 so that

arg((T(1))(z)) = arg(e’(T(1))'(z))

we get
(T(1)(@)] + (T(1)) ()] = 1.
Again by choosing 6, so that :
arg((T(1))(z)) = 7 + arg(e’(T(1))'())

we get
(T (W)(@)] = [(TQ)) (=) = 1.

Thus either
{I(T(1))(z)| = 1 and |(T(1))'(z)| = 0}

(1) {(TMW)(@)] = 0 and |(T(1))'(z)| = 1}.
Therefore, for any z € [0, 1], |(T(1))(z)| = 1 or |(T(1))(z)| = 0. But

since |[(T'(1))| is a continuous function on [0, 1] we have

I(TW)(@)| =0 or [(T(1))(z) =1.
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Now |(dT(1))((1:I;)| = 0 implies that (T'(1))(z) = (T(1))'(z) = 0 which
contradicts (1).
Hence |(T(1))(z)|] = 1 from which it follows that (T'(1))'(z) = 0
and hence
T(1) = €' for some fixed \ € [—, 7).

We denote T™(L(, ¢)) by

eiA(z’O)L(y(z,9),¢(z,o))'
The above Lemma 4 shows that A(z,6) = A for all § € [—=, x]. For

T*(L(z,0))(1) = €O Ly (2,00, p2,00 (1),
so that L, ¢)(T(1)) = eM2:8) and thus L(z’g)(e"\) = ¢"*2.9) Hence
Az, 0) = A
LEMMA 6. If z € [0,1],, then for all § € [—m, 7],

Y(z,0) = Y(z,0)-
PROOF: For fixed z € [0,1],, we consider the map p : [-7,7] —
[0,1]. given by
P(0) = Y(z,0)-
Consider the function h of the Proposition 2 constructed for (y(, g),
’(,b(z,g)), then

3
~16- 8]
> |(e* — &) || T(h))|
> |(e — e )(T(R)'(2))|
= |T(h)(z) + €°T(h)'(z) — T(h)(z) — e T(h)'(z)|
= |L(z,6)(T(h)) = L(z,0,)(T(h))|
= |T*(L(z,6) = L(2,60))(h)|
= |h(Yz.0) + €Y EOR (yiz,6)) = h(Y(z,00)) — €YEOR (Yo 00))]

> | 1B(y(z,0) + €O (y(2.0))] = [B(Y(z,00)) + €Y ER (yg0))] |

3 1 3
> |||A]l - 57t §d2(y(z,o), Y(z,6)) + ’2‘|d(y(r,9)ay(x,01))l |

1 ’ 3
= ‘édz(y(z,o),y(z,el)) + §|d(y(z,e), Y(z,60))|
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for sufficiently small |§ — 6;|. Therefore p is continuous. Hence the
image of [—m,n] in [0,1]. is connected subset of [0,1]x. It is in fact
singleton. For otherwise we could find g in A such that g =¢' =0 on
an open interval I € p([—m,7]) while for some y(; 4) € [0, 1]«,

19(y(z,0))| < 19" (Y(z,8))I-

For instance, one may take

(0 y<u
1+3
(y—y1)? ylSyS—;lﬂ
—_ 2
sW=\ _(,_1tu) 143w _3+u
) z 4
| (y—1)? 32”‘5;;51

where y; is least upper bound of I and y(, 4) sufficiently near to y;.
Thsu for an infinite number of 8 € [—x, 7] with y(, ¢) € I,

Lz,0)(T(9)) = T*(L(z,6))(9)] = € Liy(z,0),02,61(9) = O
while ‘
L(z,)(T(9)) = € Ly(z,9), (2,41 (9) # O-
Since p is continuous, p~(I) is in [—=, 7] and therefore there exist an
infinite number of @’s such that

() Leo)(T(9) =0 while Lz 4(T(g)) # 0.

Therefore (T(g))(z) + ¢**(T(g))'(z) = 0.
Varying 6 we can see that (T'(g))'(z) = 0. Thus L, 4)(T(g)) =0
which contradict (2).

Hence y(; 9) = Y(q,0) for all 6 € [—m,].
Finally we define a point map 7 of [0,1], to [0, 1], by
() = Y(z,0)-

Consideration of (T~!)* shows that 7 is onto, and, applying Lemma 6,
one-one.
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THEOREM 7. Let T be an isometry of A. Then, for f € A,

(T(f))(z) = e f(r(z))
with e'* = T(1). Moreover, T is one of the functions F, 1 — F where F

is the mapping of [0, 1], onto [0,1], defined by F(z) =z +c— [z +¢],
z € [0,1]4, c € [0,1],.

PROOF: Given = € [0,1]« and 6 € [, 7], consider the function
g of the Proposition 2 constructed for (z,6). Clearly, g does not
depend on 6; g(z) = 1; ¢'(z) is positive real and ¢'(z) > |¢'(y)| for all
y € [0,1], y # z. Therefore,

lgll = gf(m)
= ewL(z,O)(g)
= e'T*L(,,0/(T"'(9))

=¢'3=9 Lr(2), 00,0 (T (9))-

Thus we have for all § € [—m, 7]

3) gl = eX=UT())(r(=)) + ¥ (T (g))'(r(x)).

Since

lgll = 1T~ (9)ll = o (T~ (9)) (W)l
by (3) we have

llgll = (T~ (@))(r(@DI + (T (9))' (7(2)I-

Again since g is independent of 6,

(T™H9)((2)), (T7(9))'(r(=))

are independent of 6 but

A(6) = {e¥= (T (9))'(7(2))}
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depend on 8 for otherwise (3) cannot be true. In other words, A(6)
is not constant. Now by (3) A(6) must be on a circle with center as
{(T7*(g9))(r(z))} and radius equal to ||g]|.

On the other hand A(#) must be on or within the circle with cen-
ter as origin and radius equal to p = |(T~1(9))(v(z))| = |9l —
|(T~1(g))(r(z))|- This implies that (T~!(g))(r(z)) = 0 for otherwise
A(0) has to be a constant which is false.

Also by (3)

lgll = A=+ ¥ (T (g))(n(2)).

Since the left hand side is independent of 8, we have

A=0+ 9,0 = A+ Pz0)-

Hence for all § € [—7, 7],

V(z,0) = P(z,0) + 0.

Now f be any element of A such that f(z) = 0 then for all § € [—7, 7]

f'(z) = € Liz,0)(f)
= eT*L(5,6)(T(f))
= ei()‘_o)L(r(z),:b(,,a))(T_l(f))
= &O=D[(T-1(£))(r(2)) + V=0 (T2 (£)) (r(2))]
= e (T (f))(7(2)) + ¥ (T7(f)) (7(2))]

so that (T~1(f))(m(z)) = 0. For an arbitrary f € A, define 9(y) =
f(y) — f(z), y € [0,1] then g(z) = 0 and so

0= (T~} (9))(7(2)) = (T (H))r(2)) = f(&)(T7(1))(7(=))
= (T7'())(7(2)) = e"*f(z).
Thus, replacing f by T(f), it follows that for all z € [0,1], and

f e CcMo,1],, |
(T(f))(z) = e*f(r(=))-
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Now Fy is the mapping of [0, 1], onto itself given by

(2 (2y —7(z) + -%)3 - (2y —7(z)+ %)
2 1 r(z
+————-—T(xi+ 0<y< (2)
Fo(y) ={ y . r(2.’c) <y< T(z2)—|.-
2(2y —7(z) — 2)° — (2y —7(2) - 2)
2 1 r(z
\ + __T_(EZL . (_2)"'_1_ <y<l1
Therefore
(T(Fo))(z) + (T(Fv))'(2) = L(z,0)(T(Fo))
= T*L(x,ﬂ)(FO)
= € L(r(2),90,0) (F0)
= eA[Fo(1(z)) + V=0 (Fy)' (r(x))]
= ei’\[T(a:) + ei¢(”-°)].
therefore

(T(Fo))'(a) = e¥OF ¥,
7(z) = Ve,

But since 7(z)’ is real valued and 7(z) is one to one we have 7(z)' =1
or 7(z)" = —1 and, therefore 7(z) =z +c—[r+c or 7(z) = —z +
c—[z+d.
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