Isometries of a Subalgebra of $C^{(1)}[0,1]$

Yang-Hi Lee

Abstract. By $C^{(1)}[0,1]$ we denote the Banach algebra of complex valued continuously differentiable functions on $[0,1]$ with norm given by

$$
\|f\|=\sup _{x \in[0,1]}\left(|f(x)|+\left|f^{\prime}(x)\right|\right) \text { for } f \in C^{(1)}
$$

By A we denote the subalgebra of $C^{(1)}$ defined by

$$
A=\left\{f \in C^{(1)}: f(0)=f(1) \text { and } f^{\prime}(0)=f^{\prime}(1)\right\}
$$

By an isometry of A we mean a norm-preserving linear map of A onto itself.

The purpose of this article is to describe the isometries of A. More precisely, we show tht any isometry of A is induced by a point map of the interval $[0,1]$ onto itself.

The isometries of $C^{(1)}$ are determined by M. Cambern [1]. V.D. Pathak [3] have also determined the isometries of $C^{(n)}$, with norm given by

$$
\|f\|=\sup _{x \in[0,1]} \sum_{r=0}^{n} \frac{\left|f^{(r)}(x)\right|}{r!} .
$$

In the proof we shall follow the techniques of [1] and [3].
Definition 1: We define a function d from $[0,1] \times[0,1]$ into $[-1 / 2$, $1 / 2)$ by $d(x, y)=x-y-[x-y+1 / 2]$ and identify 0 with 1 then there exists a topology κ of $[0,1]$ induced by a metric $|d|$. Denote $[0,1]_{\kappa}$ for the topological space $[0,1]$ with the topology κ. For $x \in[0,1]_{\kappa}$ define $f^{\prime}(x)$ by

$$
f^{\prime}(x)= \begin{cases}\lim _{d(y, x) \rightarrow 0} \frac{f(y)-f(x)}{d(y, x)} & \text { if } f:[0,1]_{\kappa} \rightarrow C \\ \lim _{d(y, x) \rightarrow 0} \frac{d(f(y)-f(x))}{d(y, x)} & \text { if } f:[0,1]_{\kappa} \rightarrow[0,1]_{\kappa} .\end{cases}
$$

Received by the editors on 3 June 1991.
1980 Mathematics subject classifications: Primary 46.

By $C^{(1)}[0,1]_{\kappa}$ we denote the Banach algebra of complex valued continuously differentiable functions on $[0,1]_{\tau}$ into C with norm given by

$$
\|f\|=\sup _{x \in[0,1]_{\kappa}}\left(|f(x)|+\left|f^{\prime}(x)\right|\right) \quad \text { for } \quad f \in C^{(1)}[0,1]_{\kappa}
$$

By the identity function from $[0,1]$ onto $[0,1]_{\kappa}$ we can identity Banach algebra A with $C^{(1)}[0,1]_{\kappa}$. We prove the following propositions.

Proposition 2. Given $x \in[0,1]_{\kappa}, \theta \in[-\pi, \pi]$, then there exists $h \in C[0,1]_{\kappa}$ such that

$$
|h(x)|+\left|h^{\prime}(x)\right|>|h(y)|+\left|h^{\prime}(y)\right|
$$

for $y \in[0,0]_{\kappa}, x \in[0,1]_{\kappa}, y \neq x$, with $|h(x)|=h(x)>0,\left|h^{\prime}(x)\right|=$ $e^{i \theta} h(x)>0$.

Proof: Let f_{0} be the real valued, nonnegative continuous function on $[0,1]_{\kappa}$ defined as follows

$$
f_{0}(y)= \begin{cases}\frac{3}{4} d(y, x)+\frac{1}{8} & \cdots-\frac{1}{2} \leq d(x, y) \leq-\frac{1}{6} \\ 3 d(y, x)+\frac{1}{2} & \cdots-\frac{1}{6} \leq d(x, y) \leq 0 \\ -3 d(y, x)+\frac{1}{2} & \cdots 0 \leq d(x, y) \leq \frac{1}{6} \\ -\frac{3}{4} d(y, x)+\frac{1}{8} & \cdots \frac{1}{6} \leq d(x, y) \leq \frac{1}{2}\end{cases}
$$

Define $g(y)=\int_{x}^{y} f_{0}(t) d t$. It can be easily verified that $g(y)$ is as follows;

$$
g(y)= \begin{cases}\frac{1}{32}(6 d(y, x)-1)(2 d(y, x)+1) & \cdots-\frac{1}{2} \leq d(x, y) \leq-\frac{1}{6} \\ \frac{1}{2}(3 d(y, x)+1) d(y, x) & \cdots-\frac{1}{6} \leq d(x, y) \leq 0 \\ -\frac{1}{2}(3 d(y, x)-1) d(y, x) & \cdots 0 \leq d(x, y) \leq \frac{1}{6} \\ -\frac{1}{32}(6 d(y, x)+1)(2 d(y, x)-1) & \cdots \frac{1}{6} \leq d(x, y) \leq \frac{1}{2} .\end{cases}
$$

Therefore $g \in C[0,1]_{\kappa}$ and $g^{\prime}=f_{0}$. Thus

$$
\begin{gathered}
g(x)=0, \quad g^{\prime}(x)=\frac{1}{2} \\
|g(x)|+\left|g^{\prime}(x)\right|=\frac{1}{2}
\end{gathered}
$$

Now consider $|g(y)|+\left|g^{\prime}(y)\right|$ for $y \in[0,1]_{\kappa}$ and $y \neq x$.

$$
\begin{aligned}
& |g(y)|+\left|g^{\prime}(y)\right| \\
& = \begin{cases}-\frac{3}{8} d(y, x)^{2}-\frac{7}{8} d(y, x)-\frac{3}{32}<\frac{1}{2} & \cdots-\frac{1}{2} \leq d(x, y) \leq-\frac{1}{6} \\
-\frac{3}{2} d(y, x)^{2}+\frac{5}{2} d(y, x)+\frac{1}{2}<\frac{1}{2} & \cdots-\frac{1}{6} \leq d(x, y)<0 \\
-\frac{3}{2} d(y, x)^{2}-\frac{5}{2} d(y, x)+\frac{1}{2}<\frac{1}{2} & \cdots 0<d(x, y) \leq \frac{1}{6} \\
-\frac{3}{8} d(y, x)^{2}+\frac{7}{8} d(y, x)-\frac{3}{32}<\frac{1}{2} & \cdots \frac{1}{6} \leq d(x, y) \leq \frac{1}{2} .\end{cases}
\end{aligned}
$$

From this it follows that the function $h \in C[0,1]_{\kappa}$ defined by $h(y)=$ $1+e^{i \theta} g(y)$ has the desired properties.

If X is any compact Hausdorff space, we will denote by $C(X)$ the Banach algebra of continuous complex functions defined on X with the norm $\left\|\|_{\infty}\right.$ determined by $\| g \|_{\infty}=\sup _{x \in X}|g(x)|$ for $g \in C(X)$. Now let W denote the compact space $[0,1] \times[-\pi, \pi]$, given $f \in A$, we define $\tilde{f} \in C(W)$ by

$$
\tilde{f}(x, \theta)=f(\dot{x})+e^{i \theta} f^{\prime}(x) \quad(x, \theta) \in W
$$

The following lemma is then obvious.
Lemma 3. The mapping $f \rightarrow \tilde{f}$ establishes a linear and norm preserving correspondence between A and the closed subspace S of $C(W)$, $S=\{\tilde{f}: f \in A\}$.

Next given $(x, \theta) \in W$, we define a continuous linear functional $L_{(x, \theta)}$ on A by

$$
L_{(x, \theta)}(f)=\tilde{f}(x, \theta), \quad f \in A
$$

In view of Proposition 2 the proof of the following lemma is analogous to the proof of Lemma 1.2 in [1].

Lemma 4. If an element f^{*} of A^{*} is an extreme point of the unit ball U^{*} of A^{*} then f^{*} is of the form $e^{i \eta} L_{(x, \theta)}$ for some $\eta \in[-\pi, \pi]$, $(x, \theta) \in W$.

We now suppose that T is an isometry of A. The adjoint T^{*} is then an isometry of A^{*}, and thus carries extreme points of U^{*} onto itself.

Lemma 5. The image by T of the constant function 1 of A is a constant function $e^{i \lambda}, \lambda \in[-\pi, \pi]$.

Proof: For each extreme point $e^{i \eta} L_{(x, \theta)}$ of U^{*},

$$
\left|\left(e^{i \eta} L_{(x, \theta)}\right)(1)\right|=1
$$

Thus for each extreme point $T^{*}\left(e^{i \eta} L_{(x, \theta)}\right)(1) \mid=1$. Therefore, $\left|\left(L_{(x, \theta)}\right)(T(1))\right|=1$. Thus for a fixed $x,\left|(T(1))(x)+e^{i \theta}(T(1))^{\prime}(x)\right|=1$ for all $\theta \in[-\pi, \pi]$. Choosing θ so that

$$
\arg ((T(1))(x))=\arg \left(e^{i \theta}(T(1))^{\prime}(x)\right)
$$

we get

$$
|(T(1))(x)|+\left|(T(1))^{\prime}(x)\right|=1
$$

Again by choosing θ, so that

$$
\arg ((T(1))(x))=\pi+\arg \left(e^{i \theta}(T(1))^{\prime}(x)\right)
$$

we get

$$
\left||(T(1))(x)|-\left|(T(1))^{\prime}(x)\right|\right|=1
$$

Thus either

$$
\left\{|(T(1))(x)|=1 \text { and }\left|(T(1))^{\prime}(x)\right|=0\right\}
$$

or

$$
\begin{equation*}
\left\{|(T(1))(x)|=0 \text { and }\left|(T(1))^{\prime}(x)\right|=1\right\} \tag{1}
\end{equation*}
$$

Therefore, for any $x \in[0,1],|(T(1))(x)|=1$ or $|(T(1))(x)|=0$. But since $|(T(1))|$ is a continuous function on $[0,1]$ we have

$$
|(T(1))(x)| \equiv 0 \quad \text { or } \quad\left|(T(1))^{\prime}(x)\right| \equiv 1
$$

Now $|(T(1))(x)| \equiv 0$ implies that $(T(1))(x) \equiv(T(1))^{\prime}(x) \equiv 0$ which contradicts (1).

Hence $|(T(1))(x)| \equiv 1$ from which it follows that $(T(1))^{\prime}(x) \equiv 0$ and hence

$$
T(1) \equiv e^{i \lambda} \text { for some fixed } \lambda \in[-\pi, \pi]
$$

We denote $T^{*}\left(L_{(x, \theta)}\right)$ by

$$
e^{i \lambda(x, \theta)} L_{\left(y(x, \theta), \psi_{(x, \theta)}\right)}
$$

The above Lemma 4 shows that $\lambda(x, \theta) \equiv \lambda$ for all $\theta \in[-\pi, \pi]$. For

$$
T^{*}\left(L_{(x, \theta)}\right)(1)=e^{i \lambda(x, \theta)} L_{(y(x, \theta), \psi(x, \theta))}(1),
$$

so that $L_{(x, \theta)}(T(1))=e^{i \lambda(x, \theta)}$ and thus $L_{(x, \theta)}\left(e^{i \lambda}\right)=e^{i \lambda(x, \theta)}$. Hence $\lambda(x, \theta)=\lambda$.

Lemma 6. If $x \in[0,1]_{\kappa}$, then for all $\theta \in[-\pi, \pi]$,

$$
y_{(x, \theta)}=y_{(x, 0)} .
$$

Proof: For fixed $x \in[0,1]_{\kappa}$, we consider the map $\rho:[-\pi, \pi] \rightarrow$ $[0,1]_{\kappa}$ given by

$$
\rho(\theta)=y_{(x, \theta)} .
$$

Consider the function h of the Proposition 2 constructed for ($y_{(x, \theta)}$, $\psi_{(x, \theta)}$, then

$$
\begin{aligned}
& \frac{3}{2}\left|\theta-\theta_{1}\right| \\
\geq & \left|\left(e^{i \theta}-e^{i \theta_{1}}\right)\right|\|T(h)\| \\
\geq & \left|\left(e^{i \theta}-e^{i \theta_{1}}\right)\left(T(h)^{\prime}(x)\right)\right| \\
= & \left|T(h)(x)+e^{i \theta} T(h)^{\prime}(x)-T(h)(x)-e^{i \theta_{1}} T(h)^{\prime}(x)\right| \\
= & \left|L_{(x, \theta)}(T(h))-L_{\left(x, \theta_{1}\right)}(T(h))\right| \\
= & \left|T^{*}\left(L_{(x, \theta)}-L_{\left(x, \theta_{1}\right)}\right)(h)\right| \\
= & \left|h\left(y_{(x, \theta)}\right)+e^{i \psi(x, \theta)} h^{\prime}\left(y_{(x, \theta)}\right)=h\left(y_{\left(x, \theta_{1}\right)}\right)-e^{i \psi\left(x, \theta_{1}\right)} h^{\prime}\left(y_{\left(x, \theta_{1}\right)}\right)\right| \\
\geq & \left|\left|h\left(y_{(x, \theta)}\right)+e^{i \psi(x, \theta)} h^{\prime}\left(y_{(x, \theta)}\right)\right|-\left|h\left(y_{\left(x, \theta_{1}\right)}\right)+e^{i \psi\left(x, \theta_{1}\right)} h^{\prime}\left(y_{\left(x, \theta_{1}\right)}\right)\right|\right| \\
\geq & \left|\|h\|-\frac{3}{2}+\frac{1}{2} d^{2}\left(y_{(x, \theta)}, y_{\left(x, \theta_{1}\right)}\right)+\frac{3}{2}\right| d\left(y_{(x, \theta)}, y_{\left(x, \theta_{1}\right)}\right)|\mid \\
= & \left|\frac{1}{2} d^{2}\left(y_{(x, \theta)}, y_{\left(x, \theta_{1}\right)}\right)+\frac{3}{2}\right| d\left(y_{(x, \theta)}, y_{\left(x, \theta_{1}\right)}\right)|\mid
\end{aligned}
$$

for sufficiently small $\left|\theta-\theta_{1}\right|$. Therefore ρ is continuous. Hence the image of $[-\pi, \pi]$ in $[0,1]_{\kappa}$ is connected subset of $[0,1]_{\kappa}$. It is in fact singleton. For otherwise we could find g in A such that $g \equiv g^{\prime} \equiv 0$ on an open interval $I \in \rho([-\pi, \pi])$ while for some $y_{(x, \phi)} \notin[0,1]_{\kappa}$,

$$
\left|g\left(y_{(x, \phi)}\right)\right|<\left|g^{\prime}\left(y_{(x, \phi)}\right)\right|
$$

For instance, one may take

$$
g(y)= \begin{cases}0 & y \leq y_{1} \\ \left(y-y_{1}\right)^{2} & y_{1} \leq y \leq \frac{1+3 y_{1}}{4} \\ -\left(y-\frac{1+y_{1}}{2}\right)^{2} & \frac{1+3 y_{1}}{4} \leq y \leq \frac{3+y_{1}}{4} \\ (y-1)^{2} & \frac{3+y_{1}}{4} \leq y \leq 1\end{cases}
$$

where y_{1} is least upper bound of I and $y_{(x, \phi)}$ sufficiently near to y_{1}. Thsu for an infinite number of $\theta \in[-\pi, \pi]$ with $y_{(x, \theta)} \in I$,

$$
L_{(x, \theta)}(T(g))=T^{*}\left(L_{(x, \theta)}\right)(g) \mid=e^{i \lambda} L_{(y(x, \theta), \psi(x, \theta))}(g)=0
$$

while

$$
L_{(x, \phi)}(T(g))=e^{i \lambda} L_{(y(x, \phi), \psi(x, \phi))}(g) \neq 0
$$

Since ρ is continuous, $\rho^{-1}(I)$ is in $[-\pi, \pi]$ and therefore there exist an infinite number of θ 's such that

$$
\begin{equation*}
L_{(x, \theta)}(T(g))=0 \quad \text { while } \quad L_{(x, \phi)}(T(g)) \neq 0 \tag{2}
\end{equation*}
$$

Therefore $(T(g))(x)+e^{i \theta}(T(g))^{\prime}(x)=0$.
Varying θ we can see that $(T(g))^{\prime}(x)=0$. Thus $L_{(x, \phi)}(T(g))=0$ which contradict (2).

Hence $y_{(x, \theta)}=y_{(x, 0)}$ for all $\theta \in[-\pi, \pi]$.
Finally we define a point $\operatorname{map} \tau$ of $[0,1]_{\kappa}$ to $[0,1]_{\kappa}$ by

$$
\tau(x)=y_{(x, 0)}
$$

Consideration of $\left(T^{-1}\right)^{*}$ shows that τ is onto, and, applying Lemma 6, one-one.

Theorem 7. Let T be an isometry of A. Then, for $f \in A$,

$$
(T(f))(x)=e^{i \lambda} f(\tau(x))
$$

with $e^{i \lambda}=T(1)$. Moreover, τ is one of the functions $F, 1-F$ where F is the mapping of $[0,1]_{\kappa}$ onto $[0,1]_{\kappa}$ defined by $F(x)=x+c-[x+c]$, $x \in[0,1]_{\kappa}, c \in[0,1]_{\kappa}$.

Proof: Given $x \in[0,1]_{\kappa}$ and $\theta \in[-\pi, \pi]$, consider the function g of the Proposition 2 constructed for (x, θ). Clearly, g does not depend on $\theta ; g(x)=1 ; g^{\prime}(x)$ is positive real and $g^{\prime}(x)>\left|g^{\prime}(y)\right|$ for all $y \in[0,1]_{\kappa}, y \neq x$. Therefore,

$$
\begin{aligned}
\|g\| & =g^{\prime}(x) \\
& =e^{i \theta} L_{(x, \theta)}(g) \\
& =e^{i \theta} T^{*} L_{(x, \theta)}\left(T^{-1}(g)\right) \\
& =e^{i(\lambda-\theta)} L_{\left(\tau(x), \psi_{(x, \theta)}\right)}\left(T^{-1}(g)\right) .
\end{aligned}
$$

Thus we have for all $\theta \in[-\pi, \pi]$

$$
\begin{equation*}
\|g\|=e^{i(\lambda-\theta)}\left(T^{-1}(g)\right)(\tau(x))+e^{i \psi_{(x, \theta)}}\left(T^{-1}(g)\right)^{\prime}(\tau(x)) \tag{3}
\end{equation*}
$$

Since

$$
\|g\|=\left\|T^{-1}(g)\right\|=\sup _{y \in[0,1]_{\kappa}}\left|\left(T^{-1}(g)\right)(y)\right|
$$

by (3) we have

$$
\|g\|=\left|\left(T^{-1}(g)\right)(\tau(x))\right|+\left|\left(T^{-1}(g)\right)^{\prime}(\tau(x))\right| .
$$

Again since g is independent of θ,

$$
\left(T^{-1}(g)\right)(\tau(x)),\left(T^{-1}(g)\right)^{\prime}(\tau(x))
$$

are independent of θ but

$$
A(\theta)=\left\{e^{\psi_{(x, \theta)}}\left(T^{-1}(g)\right)^{\prime}(\tau(x))\right\}
$$

depend on θ for otherwise (3) cannot be true. In other words, $A(\theta)$ is not constant. Now by (3) $A(\theta)$ must be on a circle with center as $\left\{\left(T^{-1}(g)\right)(\tau(x))\right\}$ and radius equal to $\|g\|$.

On the other hand $A(\theta)$ must be on or within the circle with center as origin and radius equal to $\rho=\left|\left(T^{-1}(g)\right)^{\prime}(\tau(x))\right|=\|g\|-$ $\left|\left(T^{-1}(g)\right)(\tau(x))\right|$. This implies that $\left(T^{-1}(g)\right)(\tau(x))=0$ for otherwise $A(\theta)$ has to be a constant which is false.

Also by (3)

$$
\|g\|=e^{i\left(\lambda-\theta+\psi_{(x, \theta)}\right)}\left(T^{-1}(g)\right)(\tau(x))
$$

Since the left hand side is independent of θ, we have

$$
\lambda-\theta+\psi_{(x, \theta)}=\lambda+\psi_{(x, 0)} .
$$

Hence for all $\theta \in[-\pi, \pi]$,

$$
\psi_{(x, \theta)}=\psi_{(x, 0)}+\theta
$$

Now f be any element of A such that $f(x)=0$ then for all $\theta \in[-\pi, \pi]$

$$
\begin{aligned}
f^{\prime}(x) & =e^{i \theta} L_{(x, \theta)}(f) \\
& =e^{i \theta} T^{*} L_{(x, \theta)}\left(T^{-1}(f)\right) \\
& =e^{i(\lambda-\theta)} L_{\left(\tau(x), \psi_{(x, \theta)}\right)}\left(T^{-1}(f)\right) \\
& =e^{i(\lambda-\theta)}\left[\left(T^{-1}(f)\right)(\tau(x))+e^{i \psi_{(x, \theta)}}\left(T^{-1}(f)\right)^{\prime}(\tau(x))\right] \\
& =e^{i \lambda}\left[e^{-i \theta}\left(T^{-1}(f)\right)(\tau(x))+e^{i \psi_{(x, 0)}}\left(T^{-1}(f)\right)^{\prime}(\tau(x))\right]
\end{aligned}
$$

so that $\left(T^{-1}(f)\right)(\tau(x))=0$. For an arbitrary $f \in A$, define $g(y)=$ $f(y)-f(x), y \in[0,1]$ then $g(x)=0$ and so

$$
\begin{aligned}
0=\left(T^{-1}(g)\right)(\tau(x)) & =\left(T^{-1}(f)\right)(\tau(x))-f(x)\left(T^{-1}(1)\right)(\tau(x)) \\
& =\left(T^{-1}(f)\right)(\tau(x))-e^{-i \lambda} f(x) .
\end{aligned}
$$

Thus, replacing f by $T(f)$, it follows that for all $x \in[0,1]_{\kappa}$ and $f \in C^{(1)}[0,1]_{\kappa}$,

$$
(T(f))(x)=e^{i \lambda} f(\tau(x))
$$

Now F_{0} is the mapping of $[0,1]_{\kappa}$ onto itself given by

$$
F_{0}(y)=\left\{\begin{array}{cc}
2\left(2 y-\tau(x)+\frac{1}{2}\right)^{3}-\left(2 y-\tau(x)+\frac{1}{2}\right) & \\
+\frac{2 \tau(x)+1}{4} & \cdots 0 \leq y \leq \frac{\tau(x)}{2} \\
y & \cdots \frac{\tau(x)}{2} \leq y \leq \frac{\tau(x)+}{2} \\
2\left(2 y-\tau(x)-\frac{3}{2}\right)^{3}-\left(2 y-\tau(x)-\frac{3}{2}\right) & \\
+\frac{2 \tau(x)+1}{4} & \cdots \frac{\tau(x)+1}{2} \leq y \leq 1
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\left(T\left(F_{0}\right)\right)(x)+\left(T\left(F_{0}\right)\right)^{\prime}(x) & =L_{(x, 0)}\left(T\left(F_{0}\right)\right) \\
& =T^{*} L_{(x, 0)}\left(F_{0}\right) \\
& =e^{i \lambda} L_{\left(\tau(x), \psi_{(x, 0)}\right)}\left(F_{0}\right) \\
& =e^{i \lambda}\left[F_{0}(\tau(x))+e^{i \psi_{(x, 0)}}\left(F_{0}\right)^{\prime}(\tau(x))\right] \\
& =e^{i \lambda}\left[\tau(x)+e^{\left.i \psi_{(x, 0)}\right]}\right.
\end{aligned}
$$

therefore

$$
\begin{aligned}
\left(T\left(F_{0}\right)\right)^{\prime}(x) & =e^{i\left(\lambda+\psi_{(x, 0)}\right)} \\
\tau(x)^{\prime} & =e^{i \psi_{(x, 0)}}
\end{aligned}
$$

But since $\tau(x)^{\prime}$ is real valued and $\tau(x)$ is one to one we have $\tau(x)^{\prime} \equiv 1$ or $\tau(x)^{\prime} \equiv-1$ and, therefore $\tau(x)=x+c-[x+c]$ or $\tau(x)=-x+$ $c-[x+c]$.

References

[1] M. Cambern, Isometries of certain Banach algebras, Studia Mathematica T. XXV (1965), 217-225.
[2] N. Dunford and J. Schwarz, "Linear Operators(Part I)," New York, 1958.
[3] V.D. Pathak, Isometries of $C^{(n)}[0,1]$, Pacific J. Math. Vol. 94, No. 1 (1981), 211-222.

Department of Mathematics Education
Kongju National Teachers College
Kongju, 314-060, Korea

