• Title/Summary/Keyword: preservative efficacy

Search Result 35, Processing Time 0.037 seconds

Study of Natural Preservative System Using the Mixture of Scutellariae radix, Acacia nilotica and Citrus reticulata Extracted from Polyhydric Alcohols (다가알코올로부터 추출된 황금, 아카시아, 한라봉 추출물의 천연 방부시스템 연구)

  • Park, Sung-Min;Lee, Kyeong-Ah;Yun, Mi-Young;Kim, Young-Jae;Lee, Sang-Hwa
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.533-537
    • /
    • 2011
  • The aim of this study was to develop a new natural preservative system to improve the weak points of natural polyhydric alcohols together with the efficiency of natural plants as a preservative. Polyhydric alcohols (glyceryl caprylate and ethylhexylglycerin) and antimicrobial plants (S. radix, A. nilotica and C. reticulata) were tested using the disc diffusion method and minimum inhibitory concentration (MIC) method for their antimicrobial activity against the common poultry pathogens, respectively. A study of the preservative efficacy of the cosmetic formulations containing the optimized preservative system demonstrated sufficient preservative efficacy against bacteria and eukaryotic test microbes. These results suggest that the natural preservative system including polyhydric alcohol extracts containing natural plants could be incorporated in cosmetic formulations.

Antimicrobial Plant Extracts as an Alternative of Chemical Preservative: Preservative Efficacy of Terminalia chebula, Rhus japonica (gallut) and Cinnmomum cassia Extract in the Cosmetic Formular (가자, 오배자, 계피 추출물을 이용한 화장품 제형에서의 방부효과)

  • Cho, Eun-Mi;Bae, Jun-Tae;Pyo, Hyeong-Bae;Lee, Geun-Su
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.325-331
    • /
    • 2008
  • This study was carried to investigate the efficiency of antimicrobial plant extracts as natural preservative in the cosmetic formulations. Ethanol extracts of different plants were tested using the disc diffusion (paper disc) method and the minimum inhibitory concentration (MIC) method for their antimicrobial activity against the common poultry pathogens. Terminalia chebula and Rhus japonica (gallut) extracts exhibited antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Cinnmomum cassia extract exhibited antifungal activity against Candida albicans and Aspergillus niger while the remaining plant extracts showed no activity. A study of the preservative efficacy of the cosmetic formular containing the T. chebula, R. japonica and C. cassia extracts demonstrated sufficient preservative efficacy against bacteria and eukaryotic test microbes. Also, the cosmetic formulations containing antimicrobial plant extracts more effectively inhibited the microoranisms than the mixture of traditional chemical preservatives. These results suggest that the mixture of antimicrobial plant extracts, T. chebula, R. japonica and C. cassia is incorporated as preservative in the cosmetic formulation and the mixture have considerable effect on its efficacy.

Comparison of Preservative Efficacy Tests for Water Non-dispersible Cosmetic Formulations (비수분산 특수 제형 화장품에 대한 방부력 시험 비교 연구)

  • Kim, Yong Hyun;Park, Sung Ha;Park, Byoung Jun;Shin, Kye Ho;Kang, Hak Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.9-21
    • /
    • 2021
  • In this study, the difference between the preservative efficacy test (PET) used for water dispersion formulations and PCPC (personal care products council) guidelines alternative test method, direct contact membrane method, and surface mold test should be studied to determine what should be considered during preservative efficacy test of water non-dispersible formulations. We conducted improved PETs when using the alternative test method compared with the test methods used for stick and pressed powder. There was no significant improvement between water-in-silicon emulsions and loose powder using alternative test methods. When we checked the results of the presence and absence of the preservative system for each product, we could see that there were differences in testing methods. As a result, improved levels of results could be obtained using both existing and alternative test methods when measuring preservatives for water non-dispersible formulations. In addition, in the case of stick and pressed powder, the results were more effective when the preservative test method applied to the consumer's method of use was applied.

Preservative Efficacies according to the Composition of 1, 3-Butylene Glycol and Alkane Diols in Cosmetics (화장품에서 1,3-부틸렌 글라이콜 및 알칸디올계 조성에 따른 방부력에 관한 연구)

  • Suh, Ji Young;Yun, Mid Eum;Lee, Ye Seul;Xuan, Song Hua;Park, Dong Soon;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • In recent years, parabens used as preservatives in cosmetics have become a problem of human safety. Therefore, in this study, we tried to evaluate the preservative efficacy of 1,3-butylene glycol, 1,2-hexanediol, and 1,2-pentanediol as a preservative system to replace parabens. 1,3-Butylene glycol was added to cosmetic creams at a concentration of between 5 and 25%. The preservative efficacy of 1,3-butylene glycol was determined using a M-3 challenge test, as recommended by the Personal Care Products Council (formally CTFA). The alkane diols, such as 1,2-hexanediol and 1,2-pentanediol, were assessed in a similar manner. An evaluation of the preservative efficacy of 1,3-butylene glycol revealed that it was effective against all tested microbial strains at a concentration of 25%. We also investigated the efficacy of combinations of 0.3% phenoxyethanol and 0.1% ethylhexylglycerin. Finally, we tested the alkane diols, including 1,2-hexanediol and 1,2-pentanediol, as an alternative to the preservative 0.3% phenoxyethanol. Both 1% 1,2-hexanediol and 1% 1,2-pentanediol demonstrated preservative efficacy. Taken together, our study demonstrated that the formulation of 25% 1,3-butylene glycol and 0.1% ethylhexylglycerin, 1% 1,2-hexanediol, and 1% 1,2-pentanediol had the best preservative efficacy of the compositions tested. Thus, this study suggests that the formulation is a possibility of substituting parabens preservatives, which has been used in cosmetics and has become a safety issue.

Improvement of Antifungal Activity of for Water-Dispersed Cosmetic Formulations (수분산 제형의 화장품에 대한 항진균력 향상)

  • Lee, Ye Ji;Seo, Jae Yong;Yang, Hyeon Gap;Lee, Ju kyeong;Baek, Sol Bee;Cho, Hyun Dae;Jeong, Noh Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.135-146
    • /
    • 2022
  • In order to prevent microbial contamination and safely use cosmetics, it is essential to possess preservative power. In this study, the antifungal effect was confirmed by improving the preservative system of the aqueous dispersion formulation, which has a weak preservative power against fungi, and various preservative systems were established to strengthen the preservative power against fungi. Five kinds of raw materials (sodium anisate, p-anisic acid, caprylhydroxamic acid, o-cymen-5-ol, hydroxyacetophenone) that have a benzene ring structure having a hydroxyl group and exist as protonated form in cosmetic formulations expected to improve antifungal activity in cosmetics were selected, and the minimum growth inhibitory concentration of the raw materials was determined through MIC assay. It was confirmed that the preservative power against mold was improved through the preservative efficacy test of 4 types of water dispersion formulations (cream, lotion, toner, and sun cream) in which 4 types of raw materials showing antimicrobial activity against mold were added to the preservative system. When p-anisic acid was used, it was confirmed that the preservative activity against mold was strengthened without the effect of inhibiting the preservative power against bacteria and yeast in all four formulations.

Effects of Polyols on Antimicrobial and Preservative Efficacy in Cosmetics (화학방부제 배합량 감소를 위한 폴리올류의 항균, 방부영향력 연구)

  • Shin, Kye-Ho;Kwack, Il-Young;Lee, Sung-Won;Suh, Kyung-Hee;Moon, Sung-Joon;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-115
    • /
    • 2007
  • It is inevitable to use germicidal agents like parabens, imidazolidinyl urea, phenoxyethanol and chlorphenesin to preserve the cosmetics. Although effective in reducing microblological contamination, chemical preservatives are irritative, allergenic and even toxic to human skin. So it is needed to decrease or eliminate usage of preservatives in cosmetic products Glycerin, butylene glycol (BG), prorylene glycol (PG), and dipropylene glycol (DPG) are widely used in cosmetics as skin conditioning agent or solvents. At high concentrations, they have antimicrobial activities, but deteriorate product quality like sensory feeling or safety. The purpose of study is to evaluate the effects of polyols on antimicrobial and preservative efficacy and confirm whether using adjusted polyols can decrease the contents of preservatives without deterioration of the quality of cosmetics. Effects of common polyols on antimicrobial activities of general preservatives were measured. BG and PG significantly (p < 0.05) increased activities of preservatives, but glycerin influenced little. It was inferred from the regression analysis of the results with S. aureus that adding 1% of PG increased activities of preservatives up to $2.1{\sim}8.4 %$ and BG improved activities of preservatives up to $1.8{\sim}8.4 %$. The challenge test results for oil in water lotions and creams showed that BG and PG improved the efficacy of preservative systems up to 40 % at a range of $5.5{\sim}9.9 %$, but glycerin had little effect on it. The measured rates of improvement were analogous to the inferences from regression analysis. It can be concluded that is possible to reduce total chemical preservatives up to 40 %, consequently improve the safety and sensory quality of cosmetics with the precision control of polyols. Added to that, using this paradigm, low preservative contents, praraben-free system, and even preservative-free systems can be expected in the near future.

Biological Activity and Cosmetic Preservative Effects of Rosa multiflora Ethanol Extracts (찔레꽃 에탄올추출물의 생리활성과 화장품 방부효과)

  • Kim, Hyun Woo;Jo, Ha Neul;Yoo, Byoung Wan;Kim, Ji Hyo;Lee, Tae Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.308-316
    • /
    • 2018
  • Background: The Rosa multiflora, a well-known plant belonging to Rosacea, is widely used in orthodox medicine in worldwide. However, its biological activity and cosmetic preservative efficacy have not yet been studied. Thus, this species is yet to be defined as a functional cosmetic material. Accordingly, an investigation of the above mentioned atrributes was performed on a 50% ethanol extract of Rosa multiflora. Methods and Results: The antioxidant activity was assessed through free radical scavenging assays with 2,2-diphenyl-1-picrylhydrazyl (DPPH). Additionally, the contents of total phenols and flavonoids were analyzed. The phenolic compounds were detected using HPLC. The antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans was assessed using the disc diffusion assay. The preservative effect (challenge test) on a formulation of soothing gel was performed for 28days. The DPPH radical scavenging ability, denoted by the $SC_{50}$ (half maximal inhibitory concentration for DPPH radical scavenging) value was found to be $131.63{\mu}g/m{\ell}$. The content of total polyphenol and flavonoid content were 202 mg/g and 86.77 mg/g, respectively. In additon, astragalin and gallic acid were identified in the extract. The antimicrobial activity of the extract against S. aureus and E. coli was observed to be 5 - 0.5%, and no significant activity was noted against C. albicans. The ethanol extracts (5% and 10%) met the preservation standards of the Cosmetics, Toiletry, and Fragrance Association (CTFA). Conclusions: Thus the ethanol extract of R. multiflora can be used in cosmetics as a natural preservative and antioxidant.

The Antimicrobial Effects of Natural Aromas for Substitution of Parabens (합성 항균제를 대체하기 위한 천연물질의 항균 효과)

  • 조춘구;김봉남;홍세흠;한창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.166-185
    • /
    • 2002
  • Aroma oils extracted from the natural material have antibacterial, antivirus, antiinflammatory, and preservative effect. The preserve efficacy testing between aroma oils and parabens as an artificial preservative had been performed and then it had been suggested that aroma oil was possibile to apply to the cosmetics. Aroma oils were pine, rosemary, lemon and eucalyptus, and parabens were methylparaben, blitylparaben. Antiseptic concentrations of aroma oils and parabens having 0.0, 0.1, 0.2, 0.4, 0.8, 1.0wt% were tested respectively. Escherichia coil(ATCC No.8739), Pseudomonas aeruginosa(ATCC No. 9027) which are gram-negative and Staphylococcus aureus (ATCC No. 6538), Bacillus subtilis(ATCC No. 6633) which are gram-positive were used as the test organisms. Disk paper and broth dilution methods were used as the methods of preservative efficacy testing. The antibacterial activity of aroma oils and parabens for gram-positive were better than that for gram-negative. For the antibacterial activity aroma oils were better than parabens. Among the aroma oils, rosemary and pine having superior antibacterial activity were selected and blended to illuminate if there is any synergy, There was synergical effect and optimum ratio of aroma blend is 3 : 1(rosemary pine) in this study.

Studies on Utilization of Chitosan for Fixation of Copper Compound in Wood Preservative Treatment (목재방부리(木材防腐理)에 있어서 구리화합물(化合物) 정착제(定着濟)로서 키토산 이용(利用)에 관한 연구(硏究))

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.92-98
    • /
    • 1997
  • To make good use of chitosan forming complex with heavy metals in wood preservative treatment, woods impregnated with chitosan and copper sulfate were prepared. Amounts of leached copper, decay resistance, anti-mold efficacy, iron corrosion rates, moisture regain rates and degradation pattern in chitosan pre-treated and untreated wood were compared. After leaching test, amounts of leached copper from chitosan pre-treated wood had a much smaller than chitosan untreated wood, and good decay resistance was retained even after leaching test. From these results, it was proved that chitosan-copper complex formed in wood played and important role for decay durability. In chitosan pre-treated wood, damage values by test molds became remarkably smaller, but the growth of test molds was not perfectly inhibited. Distinct differences in iron corrosion rates between chitosan pre-treated and untreated woods was not recognized but chitosan pre-treated wood showed the lower moisture regain rates than chitosan untreated wood because of water insoluble chitosan membrane formed in wood. After leaching test, the tracheid walls in the wood treated with 2.0% copper sulfate only were eroded by the fungal attacks, but those in the wood pre-treated with chitosan remained almost intact.

  • PDF

Antomicrobial Activity amd Preservative Dffects of chitosan on cosmetic Products

  • Lee, Bum-Chun;Pyo, Hyung-Bae;Lee, Chung-Wu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.122-127
    • /
    • 1997
  • Chitin and chitosan have been almost neglected until 1960's although they second largest biomass on earth. Chitosan is a partially deacetylated chitin and belongs to the class of cationic biopolymers. We investigated the antimicrobial activity of chitosan as natural preservatives in cosmetic products. Antimicrobial activity of chitosan against some microorganisms was investigated. The results indicated that chitosan had an effectiveness against some bacteria. We found that chitosan had minimum inhibitory concentataions as low as 100 ppm to S. aureus ATCC 6538, E. coli ATCC 1634 and P. aeruginosa KCTC 2004. But there was not effects to Asp. Niger ATCC 1374 at 1,000 ppm. Also, formuias preserved with chitosan have been subjected to preservative efficacy tests to some microorganisms. Formla preserved with 0.5% chitosan had an effective antimicrobial activity against the Gram (+) and Gram (-) bacteria but not fungi. It is possible to dertermine the formulas with chitosan, which would be effective to reduce the artificial preservatives.

  • PDF