DOI QR코드

DOI QR Code

Preservative Efficacies according to the Composition of 1, 3-Butylene Glycol and Alkane Diols in Cosmetics

화장품에서 1,3-부틸렌 글라이콜 및 알칸디올계 조성에 따른 방부력에 관한 연구

  • Suh, Ji Young (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Yun, Mid Eum (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Lee, Ye Seul (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Park, Dong Soon (Aram Huvis Co., Ltd., Bundang Seoul National University Hospital Health Care Innovation Park) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
  • 서지영 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융복합산업지원센터) ;
  • 윤믿음 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융복합산업지원센터) ;
  • 이예슬 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융복합산업지원센터) ;
  • 현송화 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융복합산업지원센터) ;
  • 박동순 (아람휴비스(주)) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융복합산업지원센터)
  • Received : 2018.07.28
  • Accepted : 2018.12.19
  • Published : 2018.12.30

Abstract

In recent years, parabens used as preservatives in cosmetics have become a problem of human safety. Therefore, in this study, we tried to evaluate the preservative efficacy of 1,3-butylene glycol, 1,2-hexanediol, and 1,2-pentanediol as a preservative system to replace parabens. 1,3-Butylene glycol was added to cosmetic creams at a concentration of between 5 and 25%. The preservative efficacy of 1,3-butylene glycol was determined using a M-3 challenge test, as recommended by the Personal Care Products Council (formally CTFA). The alkane diols, such as 1,2-hexanediol and 1,2-pentanediol, were assessed in a similar manner. An evaluation of the preservative efficacy of 1,3-butylene glycol revealed that it was effective against all tested microbial strains at a concentration of 25%. We also investigated the efficacy of combinations of 0.3% phenoxyethanol and 0.1% ethylhexylglycerin. Finally, we tested the alkane diols, including 1,2-hexanediol and 1,2-pentanediol, as an alternative to the preservative 0.3% phenoxyethanol. Both 1% 1,2-hexanediol and 1% 1,2-pentanediol demonstrated preservative efficacy. Taken together, our study demonstrated that the formulation of 25% 1,3-butylene glycol and 0.1% ethylhexylglycerin, 1% 1,2-hexanediol, and 1% 1,2-pentanediol had the best preservative efficacy of the compositions tested. Thus, this study suggests that the formulation is a possibility of substituting parabens preservatives, which has been used in cosmetics and has become a safety issue.

최근 화장품에서 방부제로 사용되는 파라벤류는 인체 안전성에 대한 문제가 이슈화되고 있다. 따라서 본 연구에서는 파라벤류를 대체할 수 있는 방부시스템으로 1,3-butylene glycol, 1,2-hexanediol 및 1,2-pentanediol의 함량에 따른 방부력 효능을 평가하고자 하였다. 화장품 크림에 1,3-butylene glycol을 5- 25% 사이의 농도로 첨가하였다. 1,3-Butylene glycol의 방부력은 Personal Care Products Council(CTFA)의 M-3 시험법으로 측정하였다. 알칸 디올계인 1,2-hexanediol 및 1,2-pentanediol도 유사한 방법으로 평가하였다. 1,3-Butylene glycol의 함량에 따른 방부력 평가 결과, 25%를 첨가한 크림 처방에서 모든 시험 균주에 대하여 방부력을 나타내었으며, phenoxyethanol 0.3%와 ethylhexylglycerin 0.1%가 혼합된 처방에서 방부력을 나타내었다. 방부제인 phenoxyethanol의 0.3% 함량을 대체할 수 있는 대체 방부제로 alkane diol계인 1,2-hexanediol과 1,2-pentanediol을 선정하여 방부력 평가를 진행하였다. 1,2-Hexanediol과 1,2-pentanediol의 조성에 따른 방부력 평가 결과, 1,2-hexanediol 1%와 1,2-pentanediol 1%의 혼합 처방에서 방부력을 나타내었다. 결과적으로 본 연구에서는 25%의 1,3-butylene glycol과 0.1%의 ethylhexylglycerin, 1%의 1,2-hexanediol 및 1%의 1,2-pentanediol의 처방은 가장 우수한 방부력을 나타냄을 입증하였다. 따라서 이러한 처방은 화장품에서 사용되어 안전성의 이슈가 되어온 파라벤류 방부제를 대체할 수 있는 가능성이 있음을 시사한다.

Keywords

HJPHBN_2018_v44n4_363_f0001.png 이미지

Figure 1. Efficacy of various 1,3-BG concentrations on the microbial counts in cosmetic cream. (a) S. aureus, (b) E. coli, (c) P. aeruginosa, (d) C. albicans, and (e) A. niger. NC (1,3-BG 0%); A (1,3-BG 5%); B (1,3-BG 10%); C (1,3-BG 15%); D (1,3-BG 20%); E (1,3-BG 25%).

HJPHBN_2018_v44n4_363_f0002.png 이미지

Figure 2. Efficacy on microbial counts of adding phenoxyethanol and ethylhexylglycerin to cosmetic cream. (a) S. aureus, (b) E. coli, (c) P. aeruginosa, (d) C. albicans, and (e) A. niger. A (1,3-BG 5%); A-1 (ethylhexylglycerin 0.1%); A-2 (phenoxyethanol 0.3%); A-3 (ethylhexylglycerin 0.1% + phenoxyethanol 0.3%).

HJPHBN_2018_v44n4_363_f0003.png 이미지

Figure 3. Efficacy on microbial counts for various alkanediol compositions. (a) S. aureus, (b) E. coli, (c) P. aeruginosa, (d) C. albicans, and (e) A. niger. A-1 (ethylhexylglycerin 0.1%), E-1 (ethylhexylglycerin 0.1% + 1,2-hexanediol 1%), E-2 (ethylhexylglycerin 0.1% + 1,2-pentanediol 1%), E-3 (ethylhexylglycerin 0.1% + 1,2-hexanediol 0.5% + 1,2-pentanediol 0.5%), E-4 (ethylhexylglycerin 0.1% + 1,2-hexanediol 0.7% + 1,2-pentanediol 0.7%), and E-5 (ethylhexylglycerin 0.1% + 1,2-hexanediol 1% + 1,2-pentanediol 1%).

Table 1. List of Strains and The Cultivation Conditions used for The Antimicrobial Experiments

HJPHBN_2018_v44n4_363_t0001.png 이미지

Table 2. Formulations for The Testing of 1,3-BG

HJPHBN_2018_v44n4_363_t0002.png 이미지

Table 3. Formulations Used for The Testing of Phenoxyethanol and Ethylhexylglycerin

HJPHBN_2018_v44n4_363_t0003.png 이미지

Table 4. Formulations for The Testing of Alkanediols

HJPHBN_2018_v44n4_363_t0004.png 이미지

Table 5. Log Reduction in Microbial Counts for Creams Containing Different 1,3-BG Concentrations

HJPHBN_2018_v44n4_363_t0005.png 이미지

Table 6. Log Reduction in Microbial Counts for Creams Containing Phenoxyethanol and Ethylhexylglycerin

HJPHBN_2018_v44n4_363_t0006.png 이미지

Table 7. Log Reduction in Microbial Counts for Creams with Different Alkanediol Compositions

HJPHBN_2018_v44n4_363_t0007.png 이미지

References

  1. E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9(4), 244 (2011). https://doi.org/10.1038/nrmicro2537
  2. B. Forslind, S. Engstrom, J. Engblom, and L. Norlen, A novel approach to the understanding of human skin barrier function, J. Dermatol. Sci., 14(2), 115 (1997). https://doi.org/10.1016/S0923-1811(96)00559-2
  3. R. R. Roth and W. D. James, Microbiology of the skin: resident flora, ecology, infection, J. Am. Acad. Dermatol., 20(3), 367 (1989). https://doi.org/10.1016/S0190-9622(89)70048-7
  4. D. H. Won, H. A. Gu, H. J. Kim, S. B. Han, J. Park, and S. N. Park, Antibacterial and antioxidative activities of Epimedium koreanum Nakai extracts, Microbiol. Biotechnol. Lett., 41(3), 284 (2013). https://doi.org/10.4014/kjmb.1212.12001
  5. P. Elsner, Antimicrobials and the skin physiological and pathological flora, Curr. Probl. Dermatol., 33, 35 (2006).
  6. H. J. Kim, J. Y. Bae, H. N. Jang, and S. N. Park, Comparative study on the antimicrobial activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts with various countries of origin as natural antiseptics., Kor. J. Microbiol. Biotechnol., 41(3), 358 (2013). https://doi.org/10.4014/kjmb.1307.07003
  7. M. R. Kim, S. E. Woo, S. O. Shin, S. M. Hong, and S. Y. Yang, A Study on the distribution of Staphylococcus aureus in atopic dermatitis, J. Soc. Cosmet. Sci. Korea, 32(2), 93 (2006).
  8. K. Chiller, B. A. Selkin, and G. J. Murakawa, Skin microflora and bacterial infections of the skin, J. Investig. Dermatol. Symp. Proc., 6(3), 170 (2001). https://doi.org/10.1046/j.0022-202x.2001.00043.x
  9. R. A. Calderone and W. A. Fonzi, Virulence factors of Candida albicans, Trends. Microbiol., 9(7), 327 (2001). https://doi.org/10.1016/S0966-842X(01)02094-7
  10. M. G. Netea, G. D. Brown, B. J. Kullberg, and N. A. Gow, An integrated model of the recognition of Candida albicans by the innate immune system, Nat. Rev. Microbiol., 6(1), 67 (2008). https://doi.org/10.1038/nrmicro1815
  11. J. E. Ku, H. S. Han, and J. H. Song, The recent trend of the natural preservative used in cosmetics, Kor. J. Aesthet. Cosmetol., 11(5), 835 (2013).
  12. G. Alvarez-Rivera, T. De Miguel, M. Llompart, C. Garcia-Jares, T. G. Villa, and M. Lores, A novel outlook on detecting microbial contamination in cosmetic products: analysis of biomarker volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry, Anal. Methods-Uk, 5(2), 384 (2013). https://doi.org/10.1039/C2AY25833A
  13. E. Y. Choi, Effect of phenoxyethanol and alkane diol mixture on the antimicrobial activity and antiseptic ability in cosmetics, Kor. J. Aesthet. Cosmetol., 13(2), 213 (2015).
  14. L. F. Amaral, N. S. Camilo, M. D. Pereda, C. E. Levy, P. Moriel, and P. G. Mazzola, Evaluation of antimicrobial effectiveness of C-8 xylitol monoester as an alternative preservative for cosmetic products, Int. J. Cosmet. Sci., 33(5), 391 (2011). https://doi.org/10.1111/j.1468-2494.2010.00633.x
  15. E. Y. Lee, D. W. Choi, S. S. An, S. J. Moon, I. S. Chang, and H. C. Eun, A study of influencing factors for sensory irritation due to preservatives of cosmetics, J. Soc. Cosmet. Sci. Korea, 32(1), 65 (2006).
  16. M. D. Lundov, J. D. Johansen, C. Zachariae, and L. Moesby, Low-level efficacy of cosmetic preservatives, Int. J. Cosmet. Sci., 33(2), 190 (2011). https://doi.org/10.1111/j.1468-2494.2010.00619.x
  17. D. K. Brannan, Cosmetic preservation, J. Cosmet. Chem., 46(4), 199 (1995).
  18. M. D. Lundov, L. Moesby, C. Zachariae, and J. D. Johansen, Contamination versus preservation of cosmetics: a review on legislation, usage, infections, and contact allergy, Contact Dermatitis, 60(2), 70 (2009). https://doi.org/10.1111/j.1600-0536.2008.01501.x
  19. K. Yazar, S. Johnsson, M. L. Lind, A. Boman, and C. Liden, Preservatives and fragrances in selected consumer-available cosmetics and detergents, Contact Dermatitis, 64(5), 265 (2011). https://doi.org/10.1111/j.1600-0536.2010.01828.x
  20. J. Boberg, C. Taxvig, S. Christiansen, and U. Hass, Possible endocrine disrupting effects of parabens and their metabolites, Reprod. Toxicol., 30(2), 301 (2010). https://doi.org/10.1016/j.reprotox.2010.03.011
  21. A. C. de Groot and A. Herxheimer, Isothiazolinone preservative: cause of a continuing epidemic of cosmetic dermatitis, Lancet, 1(8633), 314 (1989).
  22. J. Y. Lee, J. N. Lee, G. T. Lee, and K. K. Lee, Development of antimicrobial plant extracts and its application to cosmetics, J. Soc. Cosmet. Sci. Korea, 38(2), 171 (2012). https://doi.org/10.15230/SCSK.2012.38.2.171
  23. T. Kinnunen and M. Koskela, Antibacterial and antifungal properties of propylene glycol, hexylene glycol, and 1,3-butylene glycol in vitro, Acta Derm. Venereol., 71(2), 148 (1991).
  24. I. K. Yoo, J. I. Kim, and Y. K. Kang, Conformational preferences and antimicrobial activities of alkanediols, Comput. Theor. Chem., 1064, 15 (2015). https://doi.org/10.1016/j.comptc.2015.04.007
  25. E. Lee, S. An, S. A. Cho, Y. Yun, J. Han, Y. K. Hwang, H. K. Kim, and T. R. Lee, The influence of alkane chain length on the skin irritation potential of 1,2-alkanediols, Int. J. Cosmet. Sci., 33(5), 421 (2011). https://doi.org/10.1111/j.1468-2494.2011.00646.x
  26. A. Kunicka-Styczynska, M. Sikora, and D. Kalemba, Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems, J. Appl. Microbiol., 107(6), 1903 (2009). https://doi.org/10.1111/j.1365-2672.2009.04372.x