• Title/Summary/Keyword: prepreg tape

Search Result 11, Processing Time 0.025 seconds

Manufacturing of fully impregnated prepreg tape and its applications (완전 함침된 프리프레그 테이프의 성형방법 및 응용분야)

  • Lee, Geon-Woong;Park, Min;Kim, Jun-Kyung;Choe, Chul-Rim;Lee, Jae-Shik;Jeong, Ho-Gap
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.245-248
    • /
    • 2002
  • Research on the high performance and strength thermoplastic/continuous fiber composites was performed. New concept of impregnating die for developing continuous strand and prepreg tape of engineering plastic/glass fiber was introduced and estimated. Fully impregnated prepreg strand and tape was successfully manufactured through the new pin structure of impregnating die and control of spreading variable. Also design variables for stability of increasing processing speed were shown. And tensile strength of prepreg tape manufactured in this study was much higher than composites made by other competition company.

  • PDF

Integrity Evaluation of Sleeve Extension Composites Manufactured by Fiber Placement System (FPS) (Fiber Placement System(FPS)에 의해 제조된 복합재료 Sleeve Extension의 성형 건전성 평가)

  • Kong Jin-Woo;Kim Jin-Bong;Kim Tae-Wook;Ju Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.254-257
    • /
    • 2004
  • Fiber placement system (FPS) carries out an advanced composites process which orients high strength reinforcing fibers in specific directions. The process includes wet winding, thermoset tape winding, thermoset prepreg placement and thermoplastic prepreg placement. FPS have the advantage of tape laying and filament winding with computer control and software. Using FPS can reduce costs, cycle times, structural weight, and handwork/rework when manufacturing composite parts. The sleeve extension is a part of the helicopter rotator systems. In this study, The sleeve extension composites were manufactured using FPS and tensile properties of this composites were characterized using universal testing machine(UTM).

  • PDF

Statistical Characteristics of Domestic Composite Material Prepregs (국산 복합재료 프리프레그 통계적 특성)

  • Kim, Jinwon;Lee, Hosung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2016
  • This study shows the statistical properties of the domestic composite material prepregs test result. During the last three years(2012.5~2015.6) the prepreg specimen tests have been performed by referring to NCAMP developed test procedure which was approved by FAA. The database of (1) Carbon Tape, (2) Glass Fabric, and (3) Carbon Fabric composite material prepregs' characteristics have been established for certified aircraft structures. This qualified materials can be used for aircraft structural design through proper material equivalency procedures.

A Study on Temperature Distributions of Thermoset Composite in FPS Process (FPS 공정에 의한 열경화성 복합재 온도분포 연구)

  • 전영준;엄문광;변준형;이상관
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.230-233
    • /
    • 2003
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication. In this study, temperature distribution of composite exposed in hot gas was studied numerically and the validity of the analysis was verified by the experiments.

  • PDF

A Study on Property of Thermoset Composite in FPS Process (FPS 공정에 의한 열경화성 복합재 유효성 검증 연구)

  • Kim J-H;Um M-K;Byun J-H;Lee S-K;Jeon Y-J
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication .. Fiber placement developed as a logical combination of filament winding and automated tape placement to overcome some of the limitations of each manufacturing method. Fiber placement uses a compaction device to apply direct contact between the incoming materials in the fiber placement head and Heat is added to the materials at the nip point of the compaction roller. This paper will discuss property of thermoset composite as compaction and heat effect in Automated fiber placement

  • PDF

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

Assembly and Test of the In-cryostat Helium Line for KSTAR (KSTAR 저온용기 내부의 헬륨라인 설치 및 검사)

  • Bang, E.N.;Park, H.T.;Lee, Y.J.;Park, Y.M.;Choi, C.H.;Bak, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In-cryostat helium lines are under installation to transfer a cryogenic helium into cold components in KSTAR device. In KSTAR, three kinds of helium should be supplied into the cold components, which are supercritical helium Into superconduction(SC) magnet system, liquid helium into current lead system, and gas helium into thermal shields. Cryogenic helium lines consist of transfer lines outside the cryostat, in-cryostat helium lines, and electrical breaks. In-cryostat helium lines should be guaranteed of leak tightness for tong time operation at high internal helium pressure of 20 bar. We wrapped the helium line with multi-layer insulator(MLI) to reduce radiation heat and insulated the surface of the high potential part with prepreg tape. The electrical break was fabricated by brazing ceramic tube with stainless steel tube. To ensure the operation reliability at operation temperature, all the electrical break have been examined by the thermal cycle test at liquid nitrogen and by the hydraulic test at 30 bar. And additional surface insulation was prepared with prepreg tape to give structural safety. At present most of the in-cryostat helium lines have been installed and the final inspection test is progressing.

Impact Performance of 3D Orthogonal Composites by Automated Tape Placement Process (자동적층 공정에 의한 3차원 직교 섬유배열구조 복합재의 충격특성)

  • Song S-W;Lee C-H;Um M-K;Hwang B-S;Byun J-H
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • In order to characterize the outstanding performance of three-dimensional (3D) composites, the low velocity impact test has been carried out. 3D fiber structures have been achieved by using the automated tape placement (ATP) process and a stitching method. Materials for the ATP and the stitching process were carbon/epoxy prepreg tapes and Kevlar fibers, respectively. Two-dimensional composites with the same stacking sequence as 3D counterparts have also been fabricated for the comparison of damage tolerance. For the assessment of damage after the impact loading, specimens were subjected to C-Scan nondestructive inspection. Compression after impact (CAI) tests were conducted to evaluate residual compressive strength. The damage area of 3D composites was greatly reduced $(30-40\%)$ compared with that of 2D composites. Although the CAI strength did not show drastic improvement for 3D composites, the ratio of retained strength was $5-10\%$ higher than 2D samples. The effect of stitching on the impact performance was negligible above the energy level of 35 Joules.

Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method (회귀분석법에 의한 복합재료 적층판의 압축파손강도 개발)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.907-911
    • /
    • 2016
  • This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at $350^{\circ}F(177^{\circ}C$). The operating temperature is -$-60^{\circ}F{\sim}+200^{\circ}F$($-55^{\circ}C{\sim}+95^{\circ}C$). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers ($0^{\circ}$, $+45^{\circ}$, $-45^{\circ}$ and $90^{\circ}$). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations ($0^{\circ}$ and ${\pm}45^{\circ}$).

A Study on Statistical Characteristics of Fatigue Life of Carbon Fiber Composite (탄소섬유 복합재 피로수명의 통계적 특성 연구)

  • Joo, Young-Sik;Lee, Won-Jun;Seo, Bo-Hwi;Lim, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • The objective of this paper is to identify the fatigue properties of carbon-fiber composite which is widely applied for the development of aircraft structures and obtain data for full-scale fatigue test. The durability and damage tolerance evaluation of composite structures is achieved by fatigue tests and parameters such as fatigue life factor and load enhancement factor. The specimens are made with carbon-fiber/epoxy UD tape and fabric prepreg. Fatigue tests are performed with several stress ratios and lay-up patterns. The Weibull shape parameters are analyzed by Sendeckyj model and individual fatigue lives with Weibull distribution. And the fatigue life factor and load enhancement factor considering reliability are evaluated.