• Title/Summary/Keyword: preliminary design chart

Search Result 18, Processing Time 0.023 seconds

Economic Design of Three-Stage $\bar{X}$ Control Chart Based on both Performance and Surrogate Variables (성능변수와 대용변수를 이용한 3단계 $\bar{X}$ 관리도의 경제적 설계)

  • Kwak, Shin-Seok;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.4
    • /
    • pp.751-770
    • /
    • 2016
  • Purpose: Two-stage ${\bar{X}}$ chart is a useful tool for process control when a surrogate variable may be used together with a performance variable. This paper extends the two-stage ${\bar{X}}$ chart to a three stage version by decomposing the first stage into the preliminary stage and the main stage. Methods: The expected cost function is derived using Markov-chain approach. The optimal designs are found for numerical examples using a genetic algorithm combined with a pattern search algorithm and compared to those of the two-stage ${\bar{X}}$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the two-stage ${\bar{X}}$ chart in terms of the expected cost per unit time unless the correlation between the performance and surrogate variables is modest and the shift in process mean is smallish. Conclusion: Three-stage ${\bar{X}}$ chart may be a useful alternative to the two-stage ${\bar{X}}$ chart especially when the correlation between the performance and surrogate variables is relatively high and the shift in process mean is on the small side.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

A Study on Development of Design Chart for Geotextile-reinorced Embankments on Soft Foundations (연약지반상의 토목섬유보강제방의 설계도표개발에 관한 연구)

  • 서인식;허노영
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.173-180
    • /
    • 1998
  • This paper presents the design chart to evaluate the two-demensional stability of geoteztilereinforcement embankments on soft foundations. The potential failure surface in this study is assumed as the logarithmic spiral curves refracted at the boundary of layers. To facilitate the iterative calculations, a program that determines the geoteztile tensile force for geotextilereinforcement embankments was developed. This program can be used for situations with a variety of soil layers and soil types. And it can be also used for a static or seismic condition. A series of calculations has been made for a schematised situation. The results of these computation are shown in design charts. Considering static or seismic load strate, these charts in the preliminary stage of the design provide a reasonable estimate of geoteztile tensile force for geotextile-reinforcement embankments on softs foundations. In the final swage a more detailed calculation can be made by developed programs.

  • PDF

Development of Design Chart for Investigating an Additional Rail Stress and Displacement on CWR(II) - Design Chart for Railway Bridge of Conventional Line (장대레일 부가축력 및 변위 검토를 위한 설계차트 개발(II) - 일반철도 교량 설계차트)

  • Choi, Il-Yoon;Lim, Yun-Sik;Yang, Sin-Chu;Choi, Jin-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.574-581
    • /
    • 2009
  • Displacement of the bridge and additional rail stress due to interaction between track and bridge should be limited to the design criteria. Interaction analysis was conducted to investigate the displacement and additional rail stress on CWR in railway bridge of conventional line. Particularly, various parameters affecting interaction phenomena were taken into account in the analysis to enhance an applicability. These parameters included configuration of structure, stiffness of deck and support, steel/concrete bridge, ballast/concrete track and FM/MFM type etc. The results were presented in the form of the design chart which could be useful in preliminary design of the bridge.

Development of Design Chart for Investigating an Additional Rail Stress and Displacement on CWR(I) - Design Chart for High Speed Railway Bridge (장대레일 부가축력 및 변위 검토를 위한 설계차트 개발(I) - 고속철도 교량 설계차트)

  • Choi, Il-Yoon;Cho, Hyun-Cheol;Yang, Sin-Chu;Choi, Jin-Yu;Yu, Jin-Young
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.565-573
    • /
    • 2009
  • Displacement of the bridge and additional rail stress due to interaction between track and bridge should be limited to the design criteria. Interaction analysis was conducted to investigate the displacement and additional rail stress on CWR in high speed railway bridge. Particularly, various parameters affecting interaction phenomena were taken into account in the analysis to enhance an applicability. These parameters included configuration of structure, stiffness of deck and support, steel/concrete bridge, ballast/concrete track and FM/MFM type etc. The results were presented in the form of the design chart which could be useful in preliminary design of the bridge.

Parametric study on Continuous Welded Rail and Bridge interaction (장대레일 궤도와 교량의 상호작용에 대한 매개변수 분석)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.303-306
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

Parametric Study on Properties of bridge by CWR(Continuous Welded Rail) and Bridge Interaction Analysis (장대레일과 교량의 상호작용 해석을 통한 교량제원 매개변수 분석)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1460-1465
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

Parametric Study on Rail and Bridge Interaction (레일과 교량의 상호작용 매개변수 분석 연구)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kim, Jung-Hun;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.445-450
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

Development of Vehicle Tunnel Ventilation System (도로터널 환기시스템 개발연구)

  • Lee, Chang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF