• Title/Summary/Keyword: prefix cache

Search Result 17, Processing Time 0.024 seconds

Bitmap-based Prefix Caching for Fast IP Lookup

  • Kim, Jinsoo;Ko, Myeong-Cheol;Nam, Junghyun;Kim, Junghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.873-889
    • /
    • 2014
  • IP address lookup is very crucial in performance of routers. Several works have been done on prefix caching to enhance the performance of IP address lookup. Since a prefix represents a range of IP addresses, a prefix cache shows better performance than an IP address cache. However, not every prefix is cacheable in itself. In a prefix cache it causes false hit to cache a non-leaf prefix because there is possibly the longer matching prefix in the routing table. Prefix expansion techniques such as complete prefix tree expansion (CPTE) make it possible to cache the non-leaf prefixes as the expanded forms, but it is hard to manage the expanded prefixes. The expanded prefixes sometimes incur a great deal of update overhead in a routing table. We propose a bitmap-based prefix cache (BMCache) to provide low update overhead as well as low cache miss ratio. The proposed scheme does not have any expanded prefixes in the routing table, but it can expand a non-leaf prefix using a bitmap on caching time. The trace-driven simulation shows that BMCache has very low miss ratio in spite of its low update overhead compared to other schemes.

A Hybrid Prefix Cashing Scheme for Efficient IP Address Lookup

  • Kim, Jinsoo;Kim, Junghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.45-52
    • /
    • 2015
  • We propose a hybrid prefix caching scheme to enable high speed IP address lookup. All prefixes loaded in a prefix cache should not be overlapped in address range for correct IP lookup. So, every non-leaf prefix needs to be expanded not so as to be overlapped. The shorter expanded prefix is more preferable because it can cover wider address range just as an single entry in a prefix cache. We exploits advantages of two dynamic prefix expansion techniques, bounded prefix expansion technique and bitmap-based prefix expansion technique. The proposed scheme uses dual bound values whereas just one bound value is used in bounded prefix expansion. Our elaborated technique make the dual bound values be associated with several subtries flexibly using bitmap information, rather than with fixed subtries. We evaluate the performance of the proposed scheme in terms of the average length of the expanded prefixes and cache miss ratio. The experiment results show the proposed scheme has lower cache miss ratio than other previous schemes including both bounded prefix expansion and bitmap-based expansion irrespective of the cache size.

Prefix Caching for Playback Delay Reduction in Edge-Fog Caching Environment (엣지-포그 캐싱 환경에서 재생 지연 감소를 위한 Prefix 캐싱 기법)

  • Jeong, Junho;Seong, Eun San;Lee, Hyounsup;Youn, Joosang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.97-99
    • /
    • 2021
  • Edge caching can provide high QoE by reducing traffic in the backhaul network and reducing latency in video streaming services. But due to the limited capacity of edge cache, large amounts of content cannot be cached. In this paper, we propose an edge-fog prefix caching that reduces playback delay by caching prefixes of video content on edges and storing the rest in fog cache.

  • PDF

Performance Evaluation of Cache Sensitive B+-tree (부분키를 사용한 캐쉬 인식 B+ 트리의 성능 평가)

  • Kim, Won-Sik;Han, Wook-Shin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.448-452
    • /
    • 2004
  • Cache sensitive $B^+-trees$ with partial keys is cache sensitive tree using both key compression and pointer compression. Although conventional cache sensitive trees consider individuallykey compression and pointer compression, cache sensitive $B^+-trees$ with partial keys make more cache utilization by compressing both key and pointer. We implement bulkload and search algorithms of cache sensitive $B^+-trees$ with partial key. And out performance studies show that cache sensitive $B^+-trees$ with partial key is better than $B^+-trees$ and Simple Prefix $B^+-trees$.

  • PDF

Similarity-based Caching Replacement Loss Minimization in Wireless Mobile Proxy Systems (무선 모바일 프록시 시스템에서 유사도 기반의 캐싱 손실 최소화)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.455-462
    • /
    • 2012
  • The loss due to caching replacement in the wireless mobile proxy caching structure has a significant effect on streaming QoS. This paper proposes a similarity-based caching loss minimization (SCLM) for minimizing the loss caused by the caching replacement. The proposed scheme divides object segments, and then it performs the similarity relation about them. Segments that perform the similarity relation generates similarity relation tree (SRT). The similarity is an important metric for deciding a relevance feedback, and segments that satisfy these requirements in the cache block for caching replacement. Simulation results show that the proposed scheme has better performance than the existing prefix caching scheme, segment-based caching scheme, and bi-directional proxy scheme in terms of QoS, average delayed startup ratio, cache throughput, and cache response ratio.

Weighted Binary Prefix Tree for IP Address Lookup (IP 주소 검색을 위한 가중 이진 프리픽스 트리)

  • Yim Changhoon;Lim Hyesook;Lee Bomi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.911-919
    • /
    • 2004
  • IP address lookup is one of the essential functions on internet routers, and it determines overall router performance. The most important evaluation factor for software-based IP address lookup is the number of the worst case memory accesses. Binary prefix tree (BPT) scheme gives small number of worst case memory accesses among previous software-based schemes. However the tree structure of BPT is normally unbalanced. In this paper, we propose weighted binary prefix tree (WBP) scheme which generates nearly balanced tree, through combining the concept of weight to the BPT generation process. The proposed WBPT gives very small number of worst case memory accesses compared to the previous software-based schemes. Moreover the WBPT requires comparably small size of memory which can be fit within L2 cache for about 30,000 prefixes, and it is rather simple for prefix addition and deletion. Hence the proposed WBPT can be used for software-based If address lookup in practical routers.

A Cache-Conscious Compression Index Based on the Level of Compression Locality (압축 지역성 수준에 기반한 캐쉬 인식 압축 색인)

  • Kim, Won-Sik;Yoo, Jae-Jun;Lee, Jin-Soo;Han, Wook-Shin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1023-1043
    • /
    • 2010
  • As main memory get cheaper, it becomes increasingly affordable to load entire index of DBMS and to access the index. Since speed gap between CPU and main memory is growing bigger, many researches to reduce a cost of main memory access are under the progress. As one of those, cache conscious trees can reduce the cost of main memory access. Since cache conscious trees reduce the number of cache miss by compressing data in node, cache conscious trees can reduce the cost of main memory. Existing cache conscious trees use only fixed one compression technique without consideration of properties of data in node. First, this paper proposes the DC-tree that uses various compression techniques and change data layout in a node according to properties of data in order to reduce cache miss. Second, this paper proposes the level of compression locality that describes properties of data in node by formula. Third, this paper proposes Forced Partial Decomposition (FPD) that reduces the nutter of cache miss. DC-trees outperform 1.7X than B+-tree, 1.5X than simple prefix B+-tree, and 1.3X than pkB-tree, in terms of the number of cache misses. Since proposed DC-trees can be adopted in commercial main memory database system, we believe that DC-trees are practical result.

Bit-Map Based Hybrid Fast IP Lookup Technique (비트-맵 기반의 혼합형 고속 IP 검색 기법)

  • Oh Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.244-254
    • /
    • 2006
  • This paper presents an efficient hybrid technique to compact the trie indexing the huge forward table small enough to be stored into cache for speeding up IP lookup. It combines two techniques, an encoding scheme called bit-map and a controlled-prefix expanding scheme to replace slow memory search with few fast-memory accesses and computations. For compaction, the bit-map represents each index and child pointer with one bit respectively. For example, when one node denotes n bits, the bit-map gives a high compression rate by consumes $2^{n-1}$ bits for $2^n$ index and child link pointers branched out of the node. The controlled-prefix expanding scheme determines the number of address bits represented by all root node of each trie's level. At this time, controlled-prefix scheme use a dynamic programming technique to get a smallest trie memory size with given number of trie's level. This paper proposes standard that can choose suitable trie structure depending on memory size of system and the required IP lookup speed presenting optimal memory size and the lookup speed according to trie level number.

  • PDF

P2Prefix : Efficient Broadcasting Streaming Scheme Based on P2P Caching (P2Prefix : P2P 캐싱 기반의 효율적인 브로드캐스트 스트리밍 기법)

  • Lee, Chi-Hun;Choi, Young;Choi, Hwang-Kyu
    • Journal of Internet Computing and Services
    • /
    • v.8 no.2
    • /
    • pp.77-87
    • /
    • 2007
  • A typical VOD service allows that a number of remote clients playback a desired video from a large collection of videos stored in one or more video servers. The main bottleneck for a VOD service is the network bandwidth connecting to the VOD server to the client due to the high bandwidth requirements. Many previous researches have shown that VOD server can be greatly improved through the use of multicast, broadcast, or P2P scheme. Broadcast is one of the most efficient techniques because it can transmit a stream to many users without additional network bandwidth. But the broadcast has long latency time. In order to overcome the drawback, in this paper, we propose P2Prefix broadcast scheme that can solve the service latency time, which is the problem of broadcast scheme, by using P2P caching as well as minimizing the client buffer requirement.

  • PDF

Binary Search on Multiple Small Trees for IP Address Lookup

  • Lee BoMi;Kim Won-Jung;Lim Hyesook
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.175-178
    • /
    • 2004
  • This paper describes a new IP address lookup algorithm using a binary search on multiple balanced trees stored in one memory. The proposed scheme has 3 different tables; a range table, a main table, and multiple sub-tables. The range table includes $2^8$ entries of 22 bits wide. Each of the main table and sub-table entries is composed of fields for a prefix, a prefix length, the number of sub-table entries, a sub-table pointer, and a forwarding RAM pointer. Binary searches are performed in the main table and the multiple sub-tables in sequence. Address lookups in our proposed scheme are achieved by memory access times of 11 in average, 1 in minimum, and 24 in maximum using 267 Kbytes of memory for 38.000 prefixes. Hence the forwarding table of the proposed scheme is stored into L2 cache, and the address lookup algorithm is implemented in software running on general purpose processor. Since the proposed scheme only depends on the number of prefixes not the length of prefixes, it is easily scaled to IPv6.

  • PDF