
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 873

Copyright ⓒ 2014 KSII

This work was supported by Konkuk University.

http://dx.doi.org/10.3837/tiis.2014.03.009

Bitmap-based Prefix Caching for Fast IP
Lookup

Jinsoo Kim

 1
, Myeong-Cheol Ko

 1
, Junghyun Nam

 1
 and Junghwan Kim

 1

1 Department of Computer Engineering, Konkuk University

322 Danwol-dong, Chungju-si, Chungbuk 380-701, Korea

[e-mail: {jinsoo, cheol, jhnam, jhkim}@kku.ac.kr]

*Corresponding author: Junghwan Kim

Received May 24, 2013; revised January 8, 2014; accepted February 27, 2014; published March 31, 2014

Abstract

IP address lookup is very crucial in performance of routers. Several works have been done on

prefix caching to enhance the performance of IP address lookup. Since a prefix represents a

range of IP addresses, a prefix cache shows better performance than an IP address cache.

However, not every prefix is cacheable in itself. In a prefix cache it causes false hit to cache a

non-leaf prefix because there is possibly the longer matching prefix in the routing table. Prefix

expansion techniques such as complete prefix tree expansion (CPTE) make it possible to

cache the non-leaf prefixes as the expanded forms, but it is hard to manage the expanded

prefixes. The expanded prefixes sometimes incur a great deal of update overhead in a routing

table. We propose a bitmap-based prefix cache (BMCache) to provide low update overhead as

well as low cache miss ratio. The proposed scheme does not have any expanded prefixes in the

routing table, but it can expand a non-leaf prefix using a bitmap on caching time. The

trace-driven simulation shows that BMCache has very low miss ratio in spite of its low update

overhead compared to other schemes.

Keywords: IP address lookup, routing table, prefix expansion, prefix cache, bitmap-based

caching

874 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

1. Introduction

Today the Internet router needs higher performance than ever before because of rapidly

increasing traffic. In the Internet router IP address lookup is one of the major functions to

provide fast packet forwarding. The IP address lookup engine has to determine the next hop

address and output port by means of a given destination IP address. The advent of CIDR

(Classless Interdomain Routing) leads to the longest prefix matching so it requires highly

sophisticated searching to reduce lookup time.
Many researches focus on efficient lookup schemes to reduce lookup latency while some

works adopt a cache to exploit locality. The average lookup time can be dramatically reduced

by exploiting locality. Some studies show that there is sufficient temporal locality, i.e., an IP

address may be repeatedly referenced over a period of time [1][2]. In earlier works full 32-bit

IP address is used for caching [3], which exploits only temporal locality. On the other hand

prefix caching exploits spatial locality by caching routing prefixes on the basis that a set of IP

addresses in a network can be repeatedly referenced over a period of time. Such prefix cache is

expected to show higher hit ratio than an IP address cache. Some works adopt a cache which

consists of multiple zones, but optimal allocation of each zone and replacement policy remains

unsolved.

Prefix caching has a drawback that a non-leaf prefix cannot be cached in itself, in spite of its

high efficiency. If a prefix with one or more children prefixes is allowed to be cached, the

cache hit result may or may not be the longest matching prefix. It does not seem that it is viable

option to cache all of its children for ensuring longest matching. There are two alternative

ways to cope with such problem. One is that no non-leaf prefix should be cached. The other is

that non-leaf prefixes should be expanded to have no child prefix. The former approach

restricts cache hit ratio while the latter increases the size of a routing table, cache miss penalty

and update overhead.

Most previous researches on prefix caching focuses on non-leaf prefix expansion, which

incurs the increase of routing table entries. When a cache miss occurs, the larger routing table

takes more search time than the original one. Also, in case of insertion of a new prefix or

deletion of a prefix, it is not easy to update the routing table with expanded prefixes. The

design of our prefix cache aims at 1) exploitation of locality as much as possible 2) minimizing

overhead to handle non-leaf prefixes 3) not only low miss ratio but low miss penalty, and 4)

easy maintenance and updatability of a routing table.

The rest of this paper is organized as follows. Section 2 describes previous works related to

caching schemes for IP lookup and also introduces prefix expansion schemes for caching. In

section 3 we explain the proposed bitmap-based prefix caching scheme in detail. Section 4

describes how the bitmap in the routing table and the prefix cache can be managed in our

scheme. In section 5 the performance of our scheme is evaluated using simulation, and we

finally conclude the paper in section 6.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 875

Copyright ⓒ 2014 KSII

2. Background

2.1 Related Work

There have been many researches on exploiting the caching mechanism to speed up IP address

lookup. Those caches can be classified into a few techniques: IP address caching, prefix

caching, multi-zone caching, and short-cut caching.

The IP address cache stores 32-bit (or 128-bit for IPv6) IP addresses. Chiueh and Pradhan

have presented a high speed IP lookup algorithm to utilize the cache in general-purpose CPU

[3]. That scheme achieves IP caching by mapping IP addresses to virtual addresses. It uses two

data structures, a destination host address cache (HAC), and a destination network address

routing table (NART). It exploits only a temporal locality by caching destination IP address

for future reuse. They expand their idea to exploit some degree of the spatial locality by

caching host address range using shift address bits for indexing [4].

 Liu has proposed prefix caching in which destination network address is cached, instead of

individual destination IP address [5]. The prefix caching exploits spatial locality by caching a

network address, i.e., a prefix which represents a range of IP addresses. It can drastically

reduce cache miss ratio compared to IP caching. Unfortunately, it induces the incorrect result

in case of a non-leaf prefix. To guarantee the correct lookup result, he presented three

methods: complete prefix tree expansion (CPTE), no prefix expansion (NPE), and partial

prefix tree expansion (PPTE). CPTE and PPTE increase the size of routing table, and it is hard

to update an expanded table in these methods. NPE does not change the routing table, but

cannot cache any non-leaf prefix.

Akhbarizadeh and Nourani have presented a new prefix caching scheme called reverse

routing cache(RRC) to expand a prefix on the fly without any modifications to the original

routing table [6]. They developed two approaches to deal with the non-leaf prefix: RRC-PR

(RRC with Parent Restriction) and RRC-ME (RRC with Minimal Expansion). In RRC-PR,

only disjoint prefixes except for a non-leaf prefix are cached. On the other hand, a non-leaf

prefix is represented by the shortest expanded child and it is not overlapped with any other

prefix in RRC-ME.

Zhu et al. have proposed an active routing prefix caching algorithm based on prefixes

covering relationships [7]. A cache is partitioned according to the level of the prefix. It reduces

the number of memory movements during the cache replacement. Although this algorithm

excludes the enlargement of routing table, the descendent prefixes of the matching prefix

should be cached together. Moreover, multiple prefixes may be matched in the cache.

Meanwhile, Huang et al. have presented greedy prefix caching scheme to cache the non-leaf

prefix as well as the expanded prefixes by RRC-ME to improve the performance [8]. It

produces multiple matches in a cache. So, these schemes require the priority encoder in

addition.

Zhang et al. have developed a scheme to cache the most used prefixes based on prediction

[9]. They used an active cache memory and a standby cache memory to predict the popular

prefixes. However, the prediction has a limit in accuracy. Many prefixes to be overlapped with

popular prefixes should be cached in addition, in order to avoid incorrect result.

In multi-zone caching, a cache is divided into multiple sections mainly based on the

matching prefix length. Locality may be less utilized due to traffic from a variety of sources in

a single unified cache. On the other hand, multi-zone caching makes better use of locality in

the way that the most likely used entries are located in larger section of cache. Shyu et al. have

developed aligned-prefix caching(APC) based on singleton information to divide a cache into

876 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

two zones: a singleton-24 prefix cache and a singleton-32 prefix cache zones [10]. They also

developed aligned-ancestor poisoning(AAP) to resolve non-cacheable prefix problem. Chvets

and MacGregor split a cache into two zones where IP addresses are cached depending on the

length of the matching prefix [11].

Kasnavi et al. have proposed a new scheme called short prefix expansion(SPE) to expand

only short prefixes less than 17, which reduces overhead for the prefix expansion [12]. They

also developed the multi-zone pipelined cache(MPC) to apply this expansion scheme to the

concept of multi-zone caching. In MPC, the prefix caching is used for short prefixes, while IP

caching is used for long prefixes.

Besides prefix caching there are several mechanisms to cache short-cut information to

reduce the IP lookup latency. Peng et al. have devised a supernode caching scheme to decrease

the number of memory accesses [13]. The original routing table should be constructed as a

supernode tree based on the tree bitmap structure. This scheme caches recently visited

supernode for the longest matching prefix. Ravinder et al. have proposed two-level cache

structure to reduce IP lookup time [14]. It is composed of the prefix cache in the first level and

the dynamic substride cache (DSC) in the second level. The DSC caches substrides, while the

prefix cache stores the matching prefixes. On the prefix cache miss, the DSC is looked up for

the substride corresponding to the IP address. The DSC can be used as the second level cache,

regardless of the prefix cache structure.

2.2 Prefix Expansion for Caching

It is obvious that a prefix cache shows lower miss ratio than an IP address cache with the same

number of entries because a prefix can be substituted for a range of IP addresses. However,

prefix caching has a drawback that not every prefix is cacheable. In case that a non-leaf prefix

is cached, it is not guaranteed that the cache hit result is always correct.

Fig. 1(a) depicts an example of a trie in a routing table to show how such a wrong result

occurs. For a given IP address IP1=001000, prefix p=0* is the matching result and p is cached

for future reuse. The length of an IP address is assumed to be 6 bits instead of 32 bits for

convenience. If next incoming IP address is IP2=000000, then p will be hit again in the cache.

However, LMP in the routing table is q=000*, so p is not the correct result. Such false hit

results from caching a non-leaf prefix. To prevent false hit in the cache, we have to allow only

leaf prefixes to be cached, or the non-leaf prefix should be cached together with all of its

descendants. It is not easy to manage such descendants in the cache, and even it requires

prefixes to be ordered in the cache because it is made of TCAM.

While NPE simply does not allow non-leaf prefixes to be cached, CPTE changes from all

the non-leaf prefixes to leaves by prefix expansion. Prefix expansion means converting a

prefix into more longer prefixes which still cover the same address space [15][16]. Fig. 1(b)

shows the routing table expanded by CPTE [5]. The non-leaf prefix p is expanded to three

prefixes, p1, p2 and p3. Since the prefix p is finally removed after expansion, there remains no

non-leaf prefix in the routing table. Note that all leaf prefixes including expanded prefixes

completely cover a range of addresses represented by p. Unfortunately, CPTE increases the

size of a routing table by around 50% due to expanded prefixes. CPTE is not viable due to the

size of a routing table as well as difficult manageability due to expanded prefixes. Liu

presented not only CPTE but also PPTE [5]. PPTE expands a non-leaf prefix down to the first

level. For example, PPTE partially expands prefix p to p3 = 01*. In case of PPTE, the non-leaf

prefix p remains in the routing table and it is marked as non-cacheable. In case that

non-cacheable prefix is matched, 32-bit full IP address is cached instead. Since there are a

number of non-cacheable prefixes, the cache miss ratio is relatively high.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 877

Copyright ⓒ 2014 KSII

Fig. 1(c) illustrates bitmap-based prefix expansion we propose in this paper. Bitmap-based

prefix expansion does not increase a routing table unlike CPTE, and considerable number of

prefixes are still effectively cached. When a non-leaf prefix is matched in the routing table, at

most k-bit (3-bit in Fig. 1(c)) is dynamically expanded and the expanded prefix will be cached.

In Fig. 1(c), a non-leaf prefix p can be dynamically expanded to new prefix bep1 = 0010* for

an IP address 001000, and it is cached without causing false hit. For another IP address 011000,

p is dynamically expanded to bep2 = 01*. For expansion, every non-leaf prefix has a bitmap to

represent the possibility of the expansion. We describe in detail how it is expanded in the

following section.

p = 0*

q

r

0 1

0

0

1

0

0

1

p2 = 00111*

p1 = 0010*

p3 = 01*

1

expanded prefix in CPTE

p = 0*

q = 000*

r = 00110*

0 1

0

0

1

0

prefix

IP1 = 001000

IP2 = 000000

p = 0*

q = 000*

r = 00110*

0 1

0

0

1

0
bep1

0010*

dynamically expanded prefix

in our scheme

bep2

01*

(a) Original trie (b) CPTE (c) Bitmap-based expansion

Fig. 1. Prefix expansion schemes

3. Proposed Caching Scheme with Bitmap

3.1 Bitmap-based Prefix Expansion

No non-leaf prefix is cacheable because it incurs false hit. We expand a non-leaf prefix using

its bitmap when it needs to be cached. Every prefix has a bitmap in our scheme. In this paper

an expanded prefix means one of the prefixes which can be obtained by prefix expansion.

Definition 1. A k-bit added prefix for prefix p is one of the k-bit longer bit strings for p which

are constructed by adding k bits to p. The i-th k-bit added prefix for prefix p is denoted by k(p,

i), 0 ≤ i ≤ 2k-1.

The number of k-bit added prefixes for a prefix is 2k. For example, all of the 2-bit added

prefixes for 011* are 01100*, 01101*, 01110* and 01111*. Also, 2(011*, 0) = 01100* and

2 (011*, 3) = 01111*. It is not concerned whether there already exists any prefix between a

prefix and its k-bit added prefix.

Definition 2. The bitmap of prefix p is a series of bits, b0b1…bm-1 denoted by bm(p), where m

= 2D and D is the degree of expansion. Each bit bi represents whether the associated k-bit added

878 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

prefix for p has at least one lineal prefix longer than p. If D(p, i) has a descendant or an

ascendant prefix (including itself) in a routing table, then bi = 1. Otherwise, bi = 0.

There are eight 3-bit added prefixes for prefix p=0* in Fig. 2, assuming the degree of

expansion is 3. 3(p, 2) and 3(p, 5) have descendant prefixes which are q=00101* and

s=010110* respectively. 3(p, 4) to 3(p, 7) have the ascendant prefix r=01* longer than p. So

the associated bits b2, b4, b5, b6 and b7 are all 1’s, and bm(p) = b0b1…b7 = 00101111.

0

p = 0*

3-bit added

0000*

0001*

0010*

0011*

0100*

0101*

0110*

0111*

prefix bitmap

p 0* 00101111

q 00101* 00000000

r 01* 00010000

s 010110* 00000000

★ 3-bit added

prefix for p

prefix

★ ★ ★ ★ ★ ★ ★ ★

1 0

0 1

0

1

1

r

p

s

0

1

q

0

3(p,7) 3(p,0)

(a) 3-bit added prefixes (b) bitmaps of prefixes

Fig. 2. Bitmap-based prefix expansion

Definition 3. For a given IP address ip and its longest matching prefix p, the bm-expanded

prefix is defined as follows. Suppose the k-bit added prefix matching with ip is q and its

associated bit among bm(p) is bi. If bi is 0, then the bm-expanded prefix is q. Otherwise it is ip

itself.

In Fig. 2, p is the longest matching prefix for a given IP address ip1=001111. Since the 3-bit

added prefix matching with ip1 is 3(p, 3)=0011* and its associated bit b3=0, the bm-expanded

prefix will be 0011*. For ip2=001000, the 3-bit added prefix is 3(p, 2)=0010* and b2 = 1, so

the bm-expanded prefix will be ip2 itself.

Postulate 1. A prefix or an expanded prefix is cacheable if it has no descendant prefix.

False hit occurs only when non-leaf prefix is cached. So any leaf prefix, i.e., which does not

have any descendant, is safely cached.

Theorem 1. Every bm-expanded prefix is cacheable.

Proof. Suppose r is the bm-expanded prefix for a given IP address ip and its longest matching

prefix p. r is either ip or a k-bit added prefix by definition 3. If r is ip, then it is full 32-bit and

trivially cacheable. If r is the k-bit added prefix, then its associated bit bi should be 0 by

definition 3. It implies that k-bit added prefix does not have any descendant prefix by

definition 2. So r is cacheable. 

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 879

Copyright ⓒ 2014 KSII

It is worthwhile to remark that it is desirable to cache as short a prefix as possible. A shorter

prefix covers a larger range of IP addresses and such prefixes occupy less cache entries. It is

straightforward to get a shorter bm-expanded prefix by using a (k-1)-bit added prefix instead

of a k-bit added prefix. If k(p, i) is a bm-expanded prefix and bibi+1 = 00 for even number of i,

then we can also use k-1(p, i/2) as the bm-expanded prefix. That bm-expanded prefix is also

cacheable. Similarly, k(p, i) is replaced by k-1(p, i/2) as the bm-expanded prefix for odd

number of i, when bi-1bi = 00. For example, in Fig. 2, the bm-expanded prefix is originally

0000* for a given IP address ip3 = 000010, but 000* is also cacheable because the associated

bits b0b1 = 00. From (k-2)-bit added prefix to 1-bit added prefix can be applied in the same way

without loss of generality.

If we use a higher degree of expansion, the efficiency of cache increases higher. For

example, in Fig. 2, if we use 4 as the degree of expansion, 00100* can be cached for a given ip2

= 001000, instead of ip2 itself. In case the degree of expansion becomes 32, the bm-expanded

prefix is actually the same as the matching prefix in CPTE. There is a trade-off between the

efficiency of cache and the size of a bitmap when we increase the degree of expansion. For a

given degree of expansion k, the size of a bitmap would be 2k bits. We tentatively use 3 as the

degree of expansion because the size of a bitmap is merely one byte.

3.2 Bitmap-based Prefix Cache

The overall architecture having bitmap-based prefix cache (BMCache) and a routing table is

shown in Fig. 3. BMCache consists of memory and a simple prefix expansion logic. In

BMCache bm-expanded prefixes and output ports are stored. Especially, the bm-expanded

prefixes are stored in TCAM, so those can be searched in parallel. The corresponding output

port number is stored in SRAM. In Fig. 3 the routing table contains whole set of prefixes and it

is looked up on cache miss. Each entry of the routing table contains a prefix and corresponding

port number together with bitmap information. The bitmap-based prefix expansion can be

performed only with a bitmap irrespective of lookup schemes.

IP
031

BMCache

prefix

…

port

…

bitmap

…

Routing Table

leng

port

bitmap

bm-eprefix port

……

Prefix
Expander

Fig. 3. Overall architecture

880 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

A prefix consists of a 32-bit IP address and its length. When IP address lookup is performed

in the routing table, <leng, port, bitmap> is returned as the result where leng is the length of the

matching prefix. IP address is not extracted from the routing table because BMCache is

already provided with it. In BMCache, the prefix expander constructs a bm-expanded prefix

using leng, bitmap and IP address.

Lookup

An overall lookup procedure is described in Fig. 4. For a given 32-bit IP address, TCAM of

BMCache is searched in parallel (step 1). Note that there is only one match, if any, because any

bm-expanded prefix has no descendant (see Theorem 1). The output port of the matched entry

will be the lookup result (steps 1 and 2).

On cache miss lookup will be performed in the main routing table, and output port, bitmap

and the length of the matched prefix is returned as a result (step 5). To construct a

bm-expanded prefix the bitmap and the length of the matching prefix are used along with the

given IP address by Prefix Expander. Then, the constructed bm-expanded prefix is stored into

the TCAM of BMCache.

Procedure 1. LOOKUP(IP)

1: idx ← BMCache.lookup(IP)
2: if hit then // Cache hit
3: return BMCache.port[idx]
4: else // Cache miss
5: <leng, port, bitmap> ← RoutingTable.lookup(IP)
6: replace(IP, <leng, port, bitmap>)

Fig. 4. Procedure of IP lookup

Cache Replacement

Fig. 5 shows how bm-expanded prefix can be constructed. The input, leng, is the length of the

matching prefix and we finally obtain the length of bm-expanded prefix from that. The length

of the bm-expanded prefix is 3-bit longer than the original matching prefix, or just 32-bit long.

It can be resolved using bitmap. For a given IP, i0i1…i31, Selector extracts 3 bits, ileng-1ilengileng+1

which is used to choose a specific bit of bitmap. The length of the bm-expanded prefix is

finally used to construct mask bits which will be stored into TCAM along with 32-bit IP

address.

MUX

8x1+3

Selector

(select 3bits)

32-bit

3-bit

8-bit

MUX

2x1

Mask Create

32-bit

Mask IP

32-bit

leng

5-bit

b
it
m

a
p

IP

32

Fig. 5. Prefix expander

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 881

Copyright ⓒ 2014 KSII

4. Bitmap Management in Routing Table

4.1 Initial Construction of Bitmap

Our bitmap-based scheme does not need any additional prefix entry such as the expanded

prefix in a routing table. It requires just bitmap information field in each prefix entry in

addition, as shown in Fig. 3. This subsection describes the method to make the bitmap

information in the initial construction stage of the routing table. In this paper we explain the

construction method for the routing table which is based on the binary trie, but that method can

be similarly applied to other routing table structures.

The bitmap information of a prefix can be constructed by recursively checking the existence

of children nodes up to the degree of expansion. Fig. 6 shows an algorithm to construct a

bitmap for given node and height. To construct the 2D–bit bitmap for a given prefix p,

Make_BM(p, D) should be called where D is the degree of expansion.

Procedure 2. Make_BM(node, height)

// D is the degree of expansion
// “a || b” denotes the concatenation of a and b.
1: if node is null then return 2

height
-bit 0’s

2: if node is a prefix and height < D then return 2
height

-bit 1’s
3: if height is 0 then return 1
4: return Make_BM(node->left_child, height-1) || Make_BM(node->right_child, height-1)

Fig. 6. Procedure of bitmap construction

Fig. 7 illustrates an example for Proc. 2. The 8-bit bitmap of prefix p can be constructed by

means of Make_BM(p, 3), which is computed by concatenation of Make_BM(a, 2) and

Make_BM(r, 2). Make_BM(a, 2) and Make_BM(r, 2) are also computed recursively. The

recursion will stop when it reaches a prefix or null, or the height comes to 0. Since r is a prefix,

Make_BM(r, 2) just returns all 1’s, i.e., 1111 without further recursion as described in step 2 of

Proc. 2. In case it reaches null, a 2height-bit 0’s is returned. For example,

Make_BM(a->left_child, 1) is 00 and Make_BM(b->right_child, 0) is 0. If the height of a

node becomes 0 and it is not a prefix node, the node must have at least one descendant prefix.

So, in case that the height reaches 0, bit 1 should be returned as step 3 of Proc. 2. For example,

Make_BM(c, 0) returns 1 in Fig. 7. Note that the node c has a descendant prefix q.

b

c

a r

p

s

q

height

3

2

1

0

Make_BM(a, 2)

Make_BM(p, 3)

Make_BM(r, 2)

Make_BM(c, 0)

Make_BM(b, 1)

1111 -----

10

0010

0010 1111

1

Fig. 7. An example of bitmap construction

882 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

The bitmap of each prefix p in a routing table is constructed by calling Make_BM(p, D). It

produces several recursive calls, which cause at most (2D+1-2) accesses to nodes. The recursion

will stop at null or a prefix, so the number of memory accesses is actually total number of

nodes up to immediate descendant prefixes. If there are n prefixes in a routing table, the total

time complexity for bitmap construction is O(2D+1∙n) in worst case. The degree of expansion,

D, is a very small constant and typically less than 4, so 2D+1 is thought of as a negligible

constant value.

4.2 Updating Bitmap in Routing Table

The routing table is frequently updated due to prefix insertion and deletion. In this subsection

we explain how bitmaps are updated when a prefix is inserted or deleted. It is clear that the

prefix deletion does not need bitmap construction regarding that prefix while the prefix

insertion requires the construction of its bitmap. Since the bitmap of a prefix reflects the

existence of its descendants, the insertion or the deletion of a prefix p may give rise to the

change of the bitmap of p’s parent prefix. However, the descendants of p are not affected by

insertion and deletion of p. The ascendants of p except p’s parent do not need to change their

bitmaps either.

The update of a routing table itself depends on the underlying structure, and it is beyond the

scope of this paper. Note that a lookup scheme can be separated from the update management.

Even though the algorithms for bitmap update are described in trie-based table, the lookup

scheme is not limited to the trie-based scheme.

In Fig. 8, Proc. 3 describes the algorithm to update bitmaps on the insertion of a new prefix

np. The bitmap for np is newly generated by calling Make_BM(np, D) in step 1, and also the

bitmap for its parent prefix par is updated in steps 2~5. After finding the parent prefix par, it

sets the bits in the bitmap where each of the corresponding D-bit added prefixes is a lineal

prefix of np. Note that it does not require additional overhead to find the parent prefix, because

ancestors are already determined while it locates the prefix np for inserting.

Procedure 3. Update_Bitmap_Insertion(np)

// np is a newly inserted prefix.
// D is the degree of expansion.
1: generate the bitmap of np by Make_BM(np, D)
2: let par be the parent prefix of np
3: let b0 b1 … bL = bm(par) where L is 2

D
-1

4: set bi for each i such that

5: D(par,i) is a descendant or an ascendant of np, or np itself

Fig. 8. Bitmap update procedure for the prefix insertion

It is straightforward to find the k-bit added prefixes which are the descendants or the

ancestor of np. After such k-bit added prefixes are determined, all the corresponding bits will

be set in the bitmap. Suppose that a prefix x=000* is inserted in Fig. 9. 0000* and 0001* are

the descendants of x, which are also 3-bit added prefixes for parent prefix 0*, i.e., 3(p, 0) and

3(p, 1) respectively. So the bits b0b1 in the bitmap of prefix p should be set as 1, and the

bitmap is changed from 00111011 to 11111011.

As described above, there is no additional overhead to find the parent of the inserted prefix.

So the number of memory accesses for bitmap update on prefix insertion is only affected by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 883

Copyright ⓒ 2014 KSII

Make_BM(np, D) in step 1 of Proc. 3. The total number of memory accesses is at most 2D+1-2,

however, inserting a leaf prefix does not incur any extra memory accesses for bitmap update.

In worst case the number of memory accesses is 14 for D=3.

x q

d

b

a

p

r

e

s

u

c

t f

wv

3(p,0) 3(p,1)

0*
bm(p) = 00111011

3(p,2) 3(p,4)

Fig. 9. The examples for bitmap updates

In order to explain the bitmap update algorithm on the prefix deletion, we introduce a new

terminology, a bridge node.

Definition 4. The bridge node of a leaf prefix p is the closest ancestor node of p which can

remain in the trie after the deletion of p.

In Fig. 9, the bridge node of r is q, because node d disappears but q still remains after the

deletion of r. Similarly, nodes b and e disappear on deletion of s, so the bridge node of s is a.

An algorithm to update bitmap on deletion of a prefix is described in Proc. 4 of Fig. 10. At

first, it tries to find the parent prefix par of the deleted prefix op, and then the distance between

op and par is compared with the degree of expansion D.

Procedure 4. Update_Bitmap_Deletion(op)

// op is a deleted prefix.
// |p| is the length of prefix p.
1: let par be the parent prefix of op
2: if |op| - |par| ≤ D then
3: str ← Make_BM(op, D - (|op| - |par|))
4: update bx…by in bitmap bm(par) as str, where

5: D(par,i) is a descendant of op, x ≤ i ≤ y
6: else
7: if op is a leaf prefix then
8: let brg be the bridge node of op
9: if |brg| - |par| < D then
10: reset bi in bm(par), where

11: D(par,i) is an ancestor of op

Fig. 10. Bitmap update procedure for the prefix deletion

If the distance (|op|-|par|) is not greater than D in step 2 of Proc. 4, it updates bm(par),

especially the bits corresponding to descendants of op. The new bit string str can be obtained

http://endic.naver.com/search.nhn?query=ancestor

884 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

by calling Make_BM(op, D-(|op|-|par|)). Suppose q=001* is deleted in Fig. 9. Since |q| - |p| = 2

< 3 (=D), Make_BM(q, 1) is called and it returns 10. 3(p, 2) and 3(p, 3) are descendants of

q, so b2b3 is replaced with new string 10. Now the bitmap of p is changed from 00111011 to

00101011.

In case that the distance (|op|-|par|) is greater than D in step 6 of Proc. 4, bm(par) is updated

only when op is a leaf prefix. If op is a non-leaf prefix, deletion of op does not affect bm(par).

For example, the deletion of a non-leaf prefix t does not affect the bitmap of p in Fig. 9. In case

that the deleted prefix op is a leaf prefix, the distance between brg and par is computed where

brg is the bridge node of op. If the distance (|brg|-|par|) is less than D in step 9 of Proc. 4, it

determines D(par, i) which is the ascendant of op. Since D(par, i) will be removed after the

deletion of op, the associated bit bi in the bitmap should be changed from 1 to 0. Suppose that

a prefix s=01001* is deleted in Fig. 9. The bridge node of s is a and the parent prefix of s is p.

Therefore, |a| - |p| = 1 < 3 (=D). b4 in bm(p) should be set to 0 because 3(p, 4) is the ascendant

of s. So the updated bitmap becomes 00110011. Now suppose a prefix v=011100* is deleted in

Fig. 9. The bridge node of prefix v is f and the parent prefix of v is p. Since |f| - |p| = 4 > 3 (=D),

the bitmap of prefix p is not affected.

The bridge of the deleted prefix can be determined without additional overhead in the same

way as the parent prefix. So the number of memory accesses for bitmap update on prefix

deletion is only affected by Make_BM(op, D-(|op|-|par|)) in step 3 of Proc. 4. Since |op|-|par| is

at least 1, the total number of memory accesses is at most 2D-2. It implies that the bitmap

update cost for prefix deletion is merely 6 in worst case for D=3.

4.3 Cache Coherency for Update

The insertion or deletion of a prefix may give rise to invalidate expanded prefixes in BMCache.

Suppose that an expanded prefix 0101* has been cached in Fig. 9. If a prefix 010* (or 01011*)

is inserted to the routing table, the prefix 0101* in BMCache may cause incorrect results. For

correct IP lookup, that prefix should be removed from BMCache.

On insertion of a new prefix np, the bm-expanded prefixes for the parent prefix par of np

should be considered for cache coherency. It should be checked which bit in the bitmap of par

is changed from 0 to 1. For each changed bit, the corresponding bm-expanded prefix should be

invalidated in BMCache.

BMCache may contain an IP address itself as a bm-expanded prefix as described in section

3.1. In Fig. 9, for a given IP address 010001, the matching prefix is p=0* but cannot be

expanded to 3(p, 4) because b4 in the bitmap of p is 1. In that case the IP address itself is

cached in BMCache. Now, suppose that prefix 010* is inserted. Then, the cached IP address

must be removed from BMCache. Actually, all the IP addresses which are descendants of the

inserted prefix may be removed for simplicity. The IP addresses which are not matched with

the inserted prefix can be removed from BMCache as well, but it does not cause incorrect

results.

On the other hand, the deletion of prefix op from a routing table may cause removal of

prefix op itself or its expanded prefixes in BMCache. Also, all the IP addresses covered by op

may be removed from BMCache in the same way as the insertion. For a given IP address

010001, in Fig. 9, the IP address itself is cached in BMCache. On deletion of prefix 0*, all the

descendant IP addresses including 010001 may be removed from BMCache.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 885

Copyright ⓒ 2014 KSII

5. Performance Evaluation

For our experiment, the routing tables are constructed for each cache scheme using a real

routing table in [17]. Table 1 shows the number of prefixes in each cache scheme. For

BMCache, there is no additional entry compared to original table. We use 8-bit bitmap, so

there are possibly up to eight 1’s in bitmap. Table 2 shows non-leaf prefix count according to

the number of 1’s in bitmap. The bitmap having fewer 1’s may result in better performance. In

almost half of total non-leaf prefixes the number of bits valued at 1 is less than 5.

Table 1. The number of prefixes for cache scheme

 BMCache CPTE PPTE

Leaf 334,166 334,166 334,166

Non-leaf 34,438 34,438 34,438

Expanded 0 169,930 13,433

Total 368,604 538,534 382,037

Table 2. Distribution of non-leaf prefix count according to the number of 1’s in bitmap

 1 2 3 4 5 6 7 8 Total

Count

(ratio)

5,409

(0.16)

4,730

(0.14)

1,771

(0.05)

5,169

(0.15)

1,341

(0.04)

1,847

(0.05)

1,112

(0.03)

13,059

(0.38)

34,438

(1.00)

All publicly available traces are anonymized over IP addresses for privacy, so the generated

traces are used for our experiment instead of real traces. Anonymized traces maintain spatial

and temporal locality of the original traces, but those include a lot of non-matching packets for

real prefixes. We generate traces in which every IP address matches with some prefix in a real

routing table, while they completely reflect the spatial and temporal locality of real traces. The

characteristics of the localities are extracted from four real traces in CAIDA [18]. Note that the

cache performance is highly dependent on those localities.

Figures 11-14 compare cache miss ratios of six schemes using the generated traces (named

Trace-1, Trace-2, Trace-3 and Trace-4). In those figures ‘IPcache’ represents a 32-bit full IP

address cache. Since ‘IPcache’ stores fixed-length IP addresses, it is sufficient to use CAM

instead of TCAM. The number of transistors in a TCAM cell is about two times more than that

in a CAM cell. So we assume it has twice as many entries as other schemes for the same size of

memory. Similarly, it is assumed that MPC has twice entries, because MPC consists of two

parts, short prefix cache and IP cache, each of which occupies half size of the prefix cache for

the same number of entries. In the experiments 8-bit bitmap is used for BMCache, i.e., the

degree of expansion is 3. The simulation results show that the miss ratio of CPTE is generally

lower than those of any other schemes. BMCache shows next lower miss ratio. Note that the

routing table of BMCache has the same number of entries as original routing table because

there is no expansion in the routing table unlike CPTE.

886 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

128 256 512 1024 2048 4096 8192

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
is

s
 r

a
ti
o

Cache size

 BMCache

 CPTE

 PPTE

 NPE

 IPcache

 MPC

128 256 512 1024 2048 4096 8192
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
is

s
 r

a
ti
o

Cache size

 BMCache

 CPTE

 PPTE

 NPE

 IPcache

 MPC

Fig. 11. Cache miss ratio (Trace-1) Fig. 12. Cache miss ratio (Trace-2)

128 256 512 1024 2048 4096 8192
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
is

s
 r

a
ti
o

Cache size

 BMCache

 CPTE

 PPTE

 NPE

 IPcache

 MPC

128 256 512 1024 2048 4096 8192

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
M

is
s
 r

a
ti
o

Cache size

 BMCache

 CPTE

 PPTE

 NPE

 IPcache

 MPC

Fig. 13. Cache miss ratio (Trace-3) Fig. 14. Cache miss ratio (Trace-4)

Fig. 15 shows the miss ratio of BMCache according to the degree of expansion D. As D

increases, the miss ratio becomes lower. However, the size of the bitmap will be doubled in the

routing table whenever D increases. For example, the bitmap size is 16 bits for D = 4 while that

is 8 bits for D = 3.

128 256 512 1024 2048 4096 8192

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
is

s
ra

tio

Cache size

 D=1

 D=2

 D=3

 D=4

Fig. 15. Miss ratio according to the degree of expansion D

Though CPTE has lower miss ratio than BMCache, CPTE may have a great update

overhead because complete expansion produces a large number of children. Fig. 16 shows the

number of expanded children for a non-leaf prefix. It shows some non-leaf prefixes have a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 887

Copyright ⓒ 2014 KSII

great number of expanded children. About 20% of non-leaf prefixes have more than 8

expanded children and even 0.4% of non-leaf prefixes have more than hundred expanded

children.

Fig. 17 compares the update overhead of a non-leaf prefix in CPTE and BMCache. In CPTE

insertion or deletion of a non-leaf prefix affects its immediate descendants and expanded

children, so the overhead is estimated by total length of paths from a non-leaf node to its

immediate descendants and expanded children. Meanwhile, in BMCache, there is no actual

expansion in the routing table, so the update overhead of a non-leaf prefix is estimated for its

bitmap by summing up the path length to immediate descendants, however, up to the degree of

expansion D=3. In Fig. 17 count of non-leaf prefixes is cumulated from the highest to the

lowest update overhead. It shows the update overhead of CPTE is higher than BMCache.

Table 3 shows the number of the expanded children and update overhead in CPTE and

BMCache. There is a great gap between CPTE and BMCache in the worst case update

overhead. The update overhead of CPTE is no less than 8,680, while that of BMCache is

merely 14. The update overhead incurs delay of lookup, so the forwarding engine should have

sufficient resources to meet the worst case update overhead.

1 10 100 1000

1

10

100

1000

C
ou

nt

Num of expanded children
Fig. 16. Distribution of the number of

the expanded children (CPTE)

1 10 100 1000 10000

5.0k

10.0k

15.0k

20.0k

25.0k

30.0k

35.0k

In
ve

rs
e

cu
m

ul
at

iv
e

co
un

t

Update overhead

 BMCache

 CPTE

Fig. 17. Distribution of the update overhead

Table 3. Expanded children and update overhead

 Max. Avg.

Expanded children (CPTE) 3,097 4.93

Update overhead (CPTE) 8,680 18.66

Update overhead (BMCache) 14 4.95

6. Conclusion

This paper proposes a new prefix caching scheme using bitmap, which shows high

performance IP lookup as well as low update overhead. In that scheme every prefix has a

bitmap in which each bit indicates whether the prefix can be expanded to some descendant or

not. When an IP address is matched with a non-cacheable prefix in a routing table, its

expanded prefix or the IP address itself is cached according to the corresponding bit in the

bitmap. Using the bitmap any prefix can be effectively cached as the expanded one, which

makes it possible to exploit a high degree of locality with low overhead. Since the proposed

scheme does not increase the number of prefix entries in a routing table, cache miss penalty is

888 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup

relatively low compared to other schemes because the lookup time usually increases as the

number of prefixes increases in the routing table. Also, our scheme can update the routing

table faster than any other prefix caching schemes owing to no additional prefixes and less

update overhead of bitmaps in the routing table.

The performance of the proposed scheme is evaluated by simulation with the real

forwarding table and a variety of traces reflecting the characteristics of locality in real traffics.

The simulation result shows that the cache miss ratio is slightly higher than CPTE, but is better

than other schemes such as PPTE, NPE, and MPC. In addition, it shows that the prefix update

in our scheme requires much lower overhead than that in CPTE.

References

[1] W.-L. Shyu, C.-S. Wu, and T.-C. Hou, “Efficiency analyses on routing cache replacement

algorithms,” in Proc. of IEEE International Conference on Communications (ICC), vol. 4, pp.

2232–2236, April–May 2002. Article (CrossRef Link).

[2] W. Shi, M. MacGregor, P. Gburzynski, “On temporal locality in IP address sequences,” IEICE

Transactions on Communications, E86-B (11), pp. 3352–3354, 2003. Article (CrossRef Link).

[3] T. Chiueh and P. Pradhan, “High performance IP routing table lookup using CPU caching,” in

Proc. of IEEE conference on Computer Communication (INFOCOM), pp. 1421-1428, Mar. 1999.

Article (CrossRef Link).

[4] T. Chiueh and P. Pradhan, “Cache memory design for network processors,” in Proc. of

International Symp. on High Performance Computer Architecture, pp. 409-419, Jan. 2000. Article

(CrossRef Link).

[5] H. Liu, “Routing prefix caching in network processor design,” in Proc. of International Conf. on

Computer Communications and Networks, Oct. 2001. Article (CrossRef Link).

[6] M. J. Akhbarizadeh and M. Nourani, “Efficient prefix cache for network processors,” 12th Annual

IEEE Symp. on High Performance Interconnects, pp. 41-46, Aug. 2004. Article (CrossRef Link).

[7] G.-s. Zhu, S.-h. Yu, and J.-y. Dai , “An Active Routing Prefix Caching Algorithm for IP Address

Lookup,” in Proc. of International Conf. on ChinaCOM 2009, pp. 1-6, Aug. 2009. Article

(CrossRef Link).

[8] Z. Huang, G. Liu, and J.-K. Peir, “Greedy Prefix Cache for IP Routing Lookups,” in Proc. of 10th

International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN), pp. 92-97,

Dec. 2009. Article (CrossRef Link).

[9] W. Zhang, J. Bi, J. Wu, and B. Zhang, “Caching Popular BGP Prefixes with Grey Modeling

Prediction,” in Proc. of 20th International Conference on Computer Communications and

Networks (ICCCN), pp. 1-6, Aug. 2011. Article (CrossRef Link).

[10] W.-L. Shyu, C.-S. Wu, and T.-C. Hou, “Aligned prefix caching based on singleton information,”

Computer Networks, vol. 47, no. 6, pp. 871–884, 2005. Article (CrossRef Link).

[11] I. L. Chvets and M. MacGregor, “Multi-zone caches for accelerating IP routing table lookups,”

Merging Optical and IP Technologies Workshop on High Performance Switching and Routng, pp.

121-126, May 2002. Article (CrossRef Link).

[12] S. Kasnavi, P. Berube, V. Gaudet and J. N. Amaral, “A cache-based internet protocol address

lookup architecture,” Computer Networks, pp. 303-326, vol. 52, issue 2, Feb. 2008. Article

(CrossRef Link).

[13] L. Peng, W. Lu, and L. Duan, “Power Efficient IP Lookup with Supernode Caching,” in Proc. of

IEEE GLOBECOM '07, pp. 215-219, Nov. 2007. Article (CrossRef Link).

[14] S. Ravinder, M.A. Nascimento, and M.H. MacGregor, “Two-level cache architecture to reduce

memory accesses for IP lookups,” in Proc. of International Conference on Teletraffic Congress

(ITC), pp. 278-285, Sep. 2011. Article (CrossRef Link).

[15] V. Srinivasan and G. Varghese, “Fast Address Lookups Using Controlled Prefix Expansion,” ACM

Trans. Computer Systems, 1999. Article (CrossRef Link).

[16] M. A. Ruiz-Sanchez, Ernst W. Biersack, and Walid Dabbous, “Survey and taxonomy of IP address

http://dx.doi.org/10.1109/ICC.2002.997243
http://search.ieice.org/bin/summary.php?id=e86-b_11_3352
http://dx.doi.org/10.1109/INFCOM.1999.752162
http://dx.doi.org/10.1109/HPCA.2000.824369
http://dx.doi.org/10.1109/HPCA.2000.824369
http://dx.doi.org/10.1109/ICCCN.2001.956214
http://dx.doi.org/10.1109/CONECT.2004.1375199
http://dx.doi.org/10.1109/CHINACOM.2009.5339861
http://dx.doi.org/10.1109/CHINACOM.2009.5339861
http://dx.doi.org/10.1109/I-SPAN.2009.139
http://dx.doi.org/10.1109/ICCCN.2011.6005708
http://dx.doi.org/10.1016/j.comnet.2004.09.002
http://dx.doi.org/10.1109/HPSR.2002.1024220
http://dx.doi.org/10.1016/j.comnet.2007.08.010
http://dx.doi.org/10.1016/j.comnet.2007.08.010
http://dx.doi.org/10.1109/GLOCOM.2007.48
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6038492
http://dx.doi.org/10.1145/296502.296503

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 889

Copyright ⓒ 2014 KSII

lookup algorithms”, IEEE Network, vol. 15, issue 2, pp. 8-23, March-April 2001. Article

(CrossRef Link).

[17] APNIC prefix table, http://thyme.apnic.net/ap-data/2011/08/25.

[18] The CAIDA UCSD Anonymized Internet Traces 2011 – Aug 25 and May 19

http://www.caida.org/data/passive/passive_2011_dataset.xml.

Jinsoo Kim received the B.S. degree from Seoul National University,

Seoul, in 1983, and the M.S. and Ph.D degrees from Korea Advanced

Institute of Science and Technology (KAIST), in 1985 and 1998,

respectively, all in computer engineering. In 1985, he joined Korea

Telecom, where he was a senior researcher. In 2000, he joined the faculty

of Konkuk University, where he is now a professor. His research interests

include parallel computing architectures, high-speed networking, wireless

sensor networks, and packet processing systems.

Myeong-Cheol Ko is a professor of computer engineering at Konkuk

University, where he directs the AVIT(Advanced Visualization and

Interaction Technology) research group. He received PhD in computer

science from Yonsei University in 2003. His research interests are in 3D

computer graphics and human-computer interaction focusing on the design

and implementation of augmented reality systems.

Junghyun Nam received the B.E. degree in Information Engineering from

Sungkyunkwan University, Korea, in 1997. He received his M.S. degree in

Computer Science from University of Louisiana, Lafayette, in 2002, and

the Ph.D. degree in Computer Engineering from Sungkyunkwan

University, Korea, in 2006. He is now an associate professor in Konkuk

University, Korea. His research interests include cryptography and

computer security.

Junghwan Kim received the B.S., M.S. and Ph.D degrees from Seoul

National University, Seoul, in 1991, 1993 and 1999, respectively, all in

computer science. In 1999 he joined Samsung Electronics, where he was a

senior researcher. In 2001 he joined the faculty of Konkuk University,

where he is now a professor. His research interests are in the areas of

parallel computing, communication networking, GPU computing, and

design of efficient algorithms.

http://dx.doi.org/10.1109/65.912716
http://dx.doi.org/10.1109/65.912716
http://thyme.apnic.net/ap-data/2011/08/25
http://www.caida.org/data/passive/passive_2011_dataset.xml

