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Abstract 
 

IP address lookup is very crucial in performance of routers. Several works have been done on 

prefix caching to enhance the performance of IP address lookup. Since a prefix represents a 

range of IP addresses, a prefix cache shows better performance than an IP address cache. 

However, not every prefix is cacheable in itself. In a prefix cache it causes false hit to cache a 

non-leaf prefix because there is possibly the longer matching prefix in the routing table. Prefix 

expansion techniques such as complete prefix tree expansion (CPTE) make it possible to 

cache the non-leaf prefixes as the expanded forms, but it is hard to manage the expanded 

prefixes. The expanded prefixes sometimes incur a great deal of update overhead in a routing 

table. We propose a bitmap-based prefix cache (BMCache) to provide low update overhead as 

well as low cache miss ratio. The proposed scheme does not have any expanded prefixes in the 

routing table, but it can expand a non-leaf prefix using a bitmap on caching time. The 

trace-driven simulation shows that BMCache has very low miss ratio in spite of its low update 

overhead compared to other schemes. 
 

 

Keywords: IP address lookup, routing table, prefix expansion, prefix cache, bitmap-based 

caching 



874                                                                                                 Kim et al.: Bitmap-based Prefix Caching for Fast IP Lookup 

1. Introduction 

Today the Internet router needs higher performance than ever before because of rapidly 

increasing traffic. In the Internet router IP address lookup is one of the major functions to 

provide fast packet forwarding. The IP address lookup engine has to determine the next hop 

address and output port by means of a given destination IP address. The advent of CIDR 

(Classless Interdomain Routing) leads to the longest prefix matching so it requires highly 

sophisticated searching to reduce lookup time. 
Many researches focus on efficient lookup schemes to reduce lookup latency while some 

works adopt a cache to exploit locality. The average lookup time can be dramatically reduced 

by exploiting locality. Some studies show that there is sufficient temporal locality, i.e., an IP 

address may be repeatedly referenced over a period of time [1][2]. In earlier works full 32-bit 

IP address is used for caching [3], which exploits only temporal locality. On the other hand 

prefix caching exploits spatial locality by caching routing prefixes on the basis that a set of IP 

addresses in a network can be repeatedly referenced over a period of time. Such prefix cache is 

expected to show higher hit ratio than an IP address cache. Some works adopt a cache which 

consists of multiple zones, but optimal allocation of each zone and replacement policy remains 

unsolved. 

Prefix caching has a drawback that a non-leaf prefix cannot be cached in itself, in spite of its 

high efficiency. If a prefix with one or more children prefixes is allowed to be cached, the 

cache hit result may or may not be the longest matching prefix. It does not seem that it is viable 

option to cache all of its children for ensuring longest matching. There are two alternative 

ways to cope with such problem. One is that no non-leaf prefix should be cached. The other is 

that non-leaf prefixes should be expanded to have no child prefix. The former approach 

restricts cache hit ratio while the latter increases the size of a routing table, cache miss penalty 

and update overhead. 

Most previous researches on prefix caching focuses on non-leaf prefix expansion, which 

incurs the increase of routing table entries. When a cache miss occurs, the larger routing table 

takes more search time than the original one. Also, in case of insertion of a new prefix or 

deletion of a prefix, it is not easy to update the routing table with expanded prefixes. The 

design of our prefix cache aims at 1) exploitation of locality as much as possible 2) minimizing 

overhead to handle non-leaf prefixes 3) not only low miss ratio but low miss penalty, and 4) 

easy maintenance and updatability of a routing table. 

The rest of this paper is organized as follows. Section 2 describes previous works related to 

caching schemes for IP lookup and also introduces prefix expansion schemes for caching. In 

section 3 we explain the proposed bitmap-based prefix caching scheme in detail. Section 4 

describes how the bitmap in the routing table and the prefix cache can be managed in our 

scheme. In section 5 the performance of our scheme is evaluated using simulation, and we 

finally conclude the paper in section 6. 
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2. Background 

2.1 Related Work 

There have been many researches on exploiting the caching mechanism to speed up IP address 

lookup. Those caches can be classified into a few techniques: IP address caching, prefix 

caching, multi-zone caching, and short-cut caching.  

The IP address cache stores 32-bit (or 128-bit for IPv6) IP addresses. Chiueh and Pradhan 

have presented a high speed IP lookup algorithm to utilize the cache in general-purpose CPU 

[3]. That scheme achieves IP caching by mapping IP addresses to virtual addresses. It uses two 

data structures, a destination host address cache (HAC), and a destination network address 

routing table (NART). It exploits only a temporal locality by caching destination IP address 

for future reuse. They expand their idea to exploit some degree of the spatial locality by 

caching host address range using shift address bits for indexing [4].  

 Liu has proposed prefix caching in which destination network address is cached, instead of 

individual destination IP address [5]. The prefix caching exploits spatial locality by caching a 

network address, i.e., a prefix which represents a range of IP addresses. It can drastically 

reduce cache miss ratio compared to IP caching. Unfortunately, it induces the incorrect result 

in case of a non-leaf prefix. To guarantee the correct lookup result, he presented three 

methods: complete prefix tree expansion (CPTE), no prefix expansion (NPE), and partial 

prefix tree expansion (PPTE). CPTE and PPTE increase the size of routing table, and it is hard 

to update an expanded table in these methods. NPE does not change the routing table, but 

cannot cache any non-leaf prefix. 

Akhbarizadeh and Nourani have presented a new prefix caching scheme called reverse 

routing cache(RRC) to expand a prefix on the fly without any modifications to the original 

routing table [6]. They developed two approaches to deal with the non-leaf prefix: RRC-PR 

(RRC with Parent Restriction) and RRC-ME (RRC with Minimal Expansion). In RRC-PR, 

only disjoint prefixes except for a non-leaf prefix are cached.  On the other hand, a non-leaf 

prefix is represented by the shortest expanded child and it is not overlapped with any other 

prefix in RRC-ME.  

Zhu et al. have proposed an active routing prefix caching algorithm based on prefixes 

covering relationships [7]. A cache is partitioned according to the level of the prefix. It reduces 

the number of memory movements during the cache replacement. Although this algorithm 

excludes the enlargement of routing table, the descendent prefixes of the matching prefix 

should be cached together. Moreover, multiple prefixes may be matched in the cache. 

Meanwhile, Huang et al. have presented greedy prefix caching scheme to cache the non-leaf 

prefix as well as the expanded prefixes by RRC-ME to improve the performance [8]. It 

produces multiple matches in a cache. So, these schemes require the priority encoder in 

addition. 

Zhang et al. have developed a scheme to cache the most used prefixes based on prediction 

[9]. They used an active cache memory and a standby cache memory to predict the popular 

prefixes. However, the prediction has a limit in accuracy. Many prefixes to be overlapped with 

popular prefixes should be cached in addition, in order to avoid incorrect result. 

In multi-zone caching, a cache is divided into multiple sections mainly based on the 

matching prefix length. Locality may be less utilized due to traffic from a variety of sources in 

a single unified cache. On the other hand, multi-zone caching makes better use of locality in 

the way that the most likely used entries are located in larger section of cache. Shyu et al. have 

developed aligned-prefix caching(APC) based on singleton information to divide a cache into 
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two zones: a singleton-24 prefix cache and a singleton-32 prefix cache zones [10]. They also 

developed aligned-ancestor poisoning(AAP) to resolve non-cacheable prefix problem. Chvets 

and MacGregor split a cache into two zones where IP addresses are cached depending on the 

length of the matching prefix [11].  

Kasnavi et al. have proposed a new scheme called short prefix expansion(SPE) to expand 

only short prefixes less than 17, which reduces overhead for the prefix expansion [12]. They 

also developed the multi-zone pipelined cache(MPC) to apply this expansion scheme to the 

concept of multi-zone caching. In MPC, the prefix caching is used for short prefixes, while IP 

caching is used for long prefixes. 

Besides prefix caching there are several mechanisms to cache short-cut information to 

reduce the IP lookup latency. Peng et al. have devised a supernode caching scheme to decrease 

the number of memory accesses [13]. The original routing table should be constructed as a 

supernode tree based on the tree bitmap structure. This scheme caches recently visited 

supernode for the longest matching prefix. Ravinder et al. have proposed two-level cache 

structure to reduce IP lookup time [14]. It is composed of the prefix cache in the first level and 

the dynamic substride cache (DSC) in the second level. The DSC caches substrides, while the 

prefix cache stores the matching prefixes. On the prefix cache miss, the DSC is looked up for 

the substride corresponding to the IP address. The DSC can be used as the second level cache, 

regardless of the prefix cache structure. 

2.2 Prefix Expansion for Caching 

It is obvious that a prefix cache shows lower miss ratio than an IP address cache with the same 

number of entries because a prefix can be substituted for a range of IP addresses. However, 

prefix caching has a drawback that not every prefix is cacheable. In case that a non-leaf prefix 

is cached, it is not guaranteed that the cache hit result is always correct. 

Fig. 1(a) depicts an example of a trie in a routing table to show how such a wrong result 

occurs. For a given IP address IP1=001000, prefix p=0* is the matching result and p is cached 

for future reuse. The length of an IP address is assumed to be 6 bits instead of 32 bits for 

convenience. If next incoming IP address is IP2=000000, then p will be hit again in the cache. 

However, LMP in the routing table is q=000*, so p is not the correct result. Such false hit 

results from caching a non-leaf prefix. To prevent false hit in the cache, we have to allow only 

leaf prefixes to be cached, or the non-leaf prefix should be cached together with all of its 

descendants. It is not easy to manage such descendants in the cache, and even it requires 

prefixes to be ordered in the cache because it is made of TCAM. 

While NPE simply does not allow non-leaf prefixes to be cached, CPTE changes from all 

the non-leaf prefixes to leaves by prefix expansion. Prefix expansion means converting a 

prefix into more longer prefixes which still cover the same address space [15][16]. Fig. 1(b) 

shows the routing table expanded by CPTE [5]. The non-leaf prefix p is expanded to three 

prefixes, p1, p2 and p3. Since the prefix p is finally removed after expansion, there remains no 

non-leaf prefix in the routing table. Note that all leaf prefixes including expanded prefixes 

completely cover a range of addresses represented by p. Unfortunately, CPTE increases the 

size of a routing table by around 50% due to expanded prefixes. CPTE is not viable due to the 

size of a routing table as well as difficult manageability due to expanded prefixes. Liu 

presented not only CPTE but also PPTE [5]. PPTE expands a non-leaf prefix down to the first 

level. For example, PPTE partially expands prefix p to p3 = 01*. In case of PPTE, the non-leaf 

prefix p remains in the routing table and it is marked as non-cacheable. In case that 

non-cacheable prefix is matched, 32-bit full IP address is cached instead. Since there are a 

number of non-cacheable prefixes, the cache miss ratio is relatively high. 
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Fig. 1(c) illustrates bitmap-based prefix expansion we propose in this paper. Bitmap-based 

prefix expansion does not increase a routing table unlike CPTE, and considerable number of 

prefixes are still effectively cached. When a non-leaf prefix is matched in the routing table, at 

most k-bit (3-bit in Fig. 1(c)) is dynamically expanded and the expanded prefix will be cached. 

In Fig. 1(c), a non-leaf prefix p can be dynamically expanded to new prefix bep1 = 0010* for 

an IP address 001000, and it is cached without causing false hit. For another IP address 011000, 

p is dynamically expanded to bep2 = 01*. For expansion, every non-leaf prefix has a bitmap to 

represent the possibility of the expansion. We describe in detail how it is expanded in the 

following section. 
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(a) Original trie                                 (b) CPTE                                 (c) Bitmap-based expansion 

 

Fig. 1. Prefix expansion schemes 

3. Proposed Caching Scheme with Bitmap 

3.1 Bitmap-based Prefix Expansion 

No non-leaf prefix is cacheable because it incurs false hit. We expand a non-leaf prefix using 

its bitmap when it needs to be cached. Every prefix has a bitmap in our scheme. In this paper 

an expanded prefix means one of the prefixes which can be obtained by prefix expansion. 

 

Definition 1.  A k-bit added prefix for prefix p is one of the k-bit longer bit strings for p which 

are constructed by adding k bits to p. The i-th k-bit added prefix for prefix p is denoted by k(p, 

i), 0 ≤ i ≤ 2k-1.  

 

The number of k-bit added prefixes for a prefix is 2k. For example, all of the 2-bit added 

prefixes for 011* are 01100*, 01101*, 01110* and 01111*. Also, 2(011*, 0) = 01100* and 

2 (011*, 3) = 01111*. It is not concerned whether there already exists any prefix between a 

prefix and its k-bit added prefix.  

 

Definition 2.  The bitmap of prefix p is a series of bits, b0b1…bm-1 denoted by bm(p), where m 

= 2D and D is the degree of expansion. Each bit bi represents whether the associated k-bit added 
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prefix for p has at least one lineal prefix longer than p. If D(p, i)  has a descendant or an 

ascendant prefix (including itself) in a routing table, then bi = 1. Otherwise, bi = 0. 

 

There are eight 3-bit added prefixes for prefix p=0* in Fig. 2, assuming the degree of 

expansion is 3. 3(p, 2) and 3(p, 5) have descendant prefixes which are q=00101* and 

s=010110* respectively. 3(p, 4) to 3(p, 7) have the ascendant prefix r=01* longer than p. So 

the associated bits b2, b4, b5, b6 and b7 are all 1’s, and bm(p) = b0b1…b7 = 00101111.  
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Fig. 2. Bitmap-based prefix expansion 

 

Definition 3.  For a given IP address ip and its longest matching prefix p, the bm-expanded 

prefix is defined as follows. Suppose the k-bit added prefix matching with ip is q and its 

associated bit among bm(p) is bi. If bi is 0, then the bm-expanded prefix is q. Otherwise it is ip 

itself. 

 

In Fig. 2, p is the longest matching prefix for a given IP address ip1=001111. Since the 3-bit 

added prefix matching with ip1 is 3(p, 3)=0011* and its associated bit b3=0, the bm-expanded 

prefix will be 0011*. For ip2=001000, the 3-bit added prefix is 3(p, 2)=0010* and b2 = 1, so 

the bm-expanded prefix will be ip2 itself. 

 

Postulate 1.  A prefix or an expanded prefix is cacheable if it has no descendant prefix.  

 

False hit occurs only when non-leaf prefix is cached. So any leaf prefix, i.e., which does not 

have any descendant, is safely cached.  

 

Theorem 1.  Every bm-expanded prefix is cacheable. 

Proof. Suppose r is the bm-expanded prefix for a given IP address ip and its longest matching 

prefix p. r is either ip or a k-bit added prefix by definition 3. If r is ip, then it is full 32-bit and 

trivially cacheable. If r is the k-bit added prefix, then its associated bit bi should be 0 by 

definition 3. It implies that k-bit added prefix does not have any descendant prefix by 

definition 2. So r is cacheable.  
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It is worthwhile to remark that it is desirable to cache as short a prefix as possible. A shorter 

prefix covers a larger range of IP addresses and such prefixes occupy less cache entries. It is 

straightforward to get a shorter bm-expanded prefix by using a (k-1)-bit added prefix instead 

of a k-bit added prefix. If k(p, i) is a bm-expanded prefix and bibi+1 = 00 for even number of i, 

then we can also use k-1(p, i/2) as the bm-expanded prefix. That bm-expanded prefix is also 

cacheable. Similarly, k(p, i) is replaced by k-1(p, i/2) as the bm-expanded prefix for odd 

number of i, when bi-1bi = 00. For example, in Fig. 2, the bm-expanded prefix is originally 

0000* for a given IP address ip3 = 000010, but 000* is also cacheable because the associated 

bits b0b1 = 00. From (k-2)-bit added prefix to 1-bit added prefix can be applied in the same way 

without loss of generality. 

If we use a higher degree of expansion, the efficiency of cache increases higher. For 

example, in Fig. 2, if we use 4 as the degree of expansion, 00100* can be cached for a given ip2 

= 001000, instead of ip2 itself. In case the degree of expansion becomes 32, the bm-expanded 

prefix is actually the same as the matching prefix in CPTE. There is a trade-off between the 

efficiency of cache and the size of a bitmap when we increase the degree of expansion. For a 

given degree of expansion k, the size of a bitmap would be 2k bits. We tentatively use 3 as the 

degree of expansion because the size of a bitmap is merely one byte. 

 

3.2 Bitmap-based Prefix Cache 

The overall architecture having bitmap-based prefix cache (BMCache) and a routing table is 

shown in Fig. 3. BMCache consists of memory and a simple prefix expansion logic. In 

BMCache bm-expanded prefixes and output ports are stored. Especially, the bm-expanded 

prefixes are stored in TCAM, so those can be searched in parallel. The corresponding output 

port number is stored in SRAM. In Fig. 3 the routing table contains whole set of prefixes and it 

is looked up on cache miss. Each entry of the routing table contains a prefix and corresponding 

port number together with bitmap information. The bitmap-based prefix expansion can be 

performed only with a bitmap irrespective of lookup schemes. 
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Fig. 3. Overall architecture 
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A prefix consists of a 32-bit IP address and its length. When IP address lookup is performed 

in the routing table, <leng, port, bitmap> is returned as the result where leng is the length of the 

matching prefix. IP address is not extracted from the routing table because BMCache is 

already provided with it. In BMCache, the prefix expander constructs a bm-expanded prefix 

using leng, bitmap and IP address. 
 

Lookup 

An overall lookup procedure is described in Fig. 4. For a given 32-bit IP address, TCAM of 

BMCache is searched in parallel (step 1). Note that there is only one match, if any, because any 

bm-expanded prefix has no descendant (see Theorem 1). The output port of the matched entry 

will be the lookup result (steps 1 and 2). 

On cache miss lookup will be performed in the main routing table, and output port, bitmap 

and the length of the matched prefix is returned as a result (step 5). To construct a 

bm-expanded prefix the bitmap and the length of the matching prefix are used along with the 

given IP address by Prefix Expander. Then, the constructed bm-expanded prefix is stored into 

the TCAM of BMCache. 
 

Procedure 1. LOOKUP(IP) 

1: idx ← BMCache.lookup(IP) 
2: if hit then    // Cache hit 
3:  return BMCache.port[idx] 
4: else            // Cache miss 
5:  <leng, port, bitmap> ← RoutingTable.lookup(IP) 
6: replace(IP, <leng, port, bitmap>) 

 

Fig. 4. Procedure of IP lookup 

 

Cache Replacement 

Fig. 5 shows how bm-expanded prefix can be constructed. The input, leng, is the length of the 

matching prefix and we finally obtain the length of bm-expanded prefix from that. The length 

of the bm-expanded prefix is 3-bit longer than the original matching prefix, or just 32-bit long. 

It can be resolved using bitmap. For a given IP, i0i1…i31, Selector extracts 3 bits, ileng-1ilengileng+1 

which is used to choose a specific bit of bitmap. The length of the bm-expanded prefix is 

finally used to construct mask bits which will be stored into TCAM along with 32-bit IP 

address. 
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4. Bitmap Management in Routing Table  

4.1 Initial Construction of Bitmap 

Our bitmap-based scheme does not need any additional prefix entry such as the expanded 

prefix in a routing table. It requires just bitmap information field in each prefix entry in 

addition, as shown in Fig. 3. This subsection describes the method to make the bitmap 

information in the initial construction stage of the routing table. In this paper we explain the 

construction method for the routing table which is based on the binary trie, but that method can 

be similarly applied to other routing table structures. 

The bitmap information of a prefix can be constructed by recursively checking the existence 

of children nodes up to the degree of expansion. Fig. 6 shows an algorithm to construct a 

bitmap for given node and height. To construct the 2D–bit bitmap for a given prefix p, 

Make_BM(p, D) should be called where D is the degree of expansion.  
 

Procedure 2. Make_BM(node, height)  

// D is the degree of expansion  
// “a || b” denotes the concatenation of a and b. 
1: if node is null then  return 2

height
-bit 0’s 

2: if node is a prefix and height < D then  return 2
height

-bit 1’s 
3: if height is 0 then  return 1 
4: return Make_BM(node->left_child, height-1) || Make_BM(node->right_child, height-1)  

 

Fig. 6. Procedure of bitmap construction 

 

Fig. 7 illustrates an example for Proc. 2. The 8-bit bitmap of prefix p can be constructed by 

means of Make_BM(p, 3), which is computed by concatenation of Make_BM(a, 2) and 

Make_BM(r, 2). Make_BM(a, 2) and Make_BM(r, 2) are also computed recursively. The 

recursion will stop when it reaches a prefix or null, or the height comes to 0. Since r is a prefix, 

Make_BM(r, 2) just returns all 1’s, i.e., 1111 without further recursion as described in step 2 of 

Proc. 2. In case it reaches null, a 2height-bit 0’s is returned. For example, 

Make_BM(a->left_child, 1) is 00 and Make_BM(b->right_child, 0) is 0. If the height of a 

node becomes 0 and it is not a prefix node, the node must have at least one descendant prefix. 

So, in case that the height reaches 0, bit 1 should be returned as step 3 of Proc. 2. For example, 

Make_BM(c, 0) returns 1 in Fig. 7. Note that the node c has a descendant prefix q.  
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Fig. 7. An example of bitmap construction 
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The bitmap of each prefix p in a routing table is constructed by calling Make_BM(p, D). It 

produces several recursive calls, which cause at most (2D+1-2) accesses to nodes. The recursion 

will stop at null or a prefix, so the number of memory accesses is actually total number of 

nodes up to immediate descendant prefixes. If there are n prefixes in a routing table, the total 

time complexity for bitmap construction is O(2D+1∙n) in worst case. The degree of expansion, 

D, is a very small constant and typically less than 4, so 2D+1 is thought of as a negligible 

constant value. 

4.2 Updating Bitmap in Routing Table 

The routing table is frequently updated due to prefix insertion and deletion. In this subsection 

we explain how bitmaps are updated when a prefix is inserted or deleted. It is clear that the 

prefix deletion does not need bitmap construction regarding that prefix while the prefix 

insertion requires the construction of its bitmap. Since the bitmap of a prefix reflects the 

existence of its descendants, the insertion or the deletion of a prefix p may give rise to the 

change of the bitmap of p’s parent prefix. However, the descendants of p are not affected by 

insertion and deletion of p. The ascendants of p except p’s parent do not need to change their 

bitmaps either.  

The update of a routing table itself depends on the underlying structure, and it is beyond the 

scope of this paper. Note that a lookup scheme can be separated from the update management. 

Even though the algorithms for bitmap update are described in trie-based table, the lookup 

scheme is not limited to the trie-based scheme.  

In Fig. 8, Proc. 3 describes the algorithm to update bitmaps on the insertion of a new prefix 

np. The bitmap for np is newly generated by calling Make_BM(np, D) in step 1, and also the 

bitmap for its parent prefix par is updated in steps 2~5. After finding the parent prefix par, it 

sets the bits in the bitmap where each of the corresponding D-bit added prefixes is a lineal 

prefix of np. Note that it does not require additional overhead to find the parent prefix, because 

ancestors are already determined while it locates the prefix np for inserting. 

 

Procedure 3. Update_Bitmap_Insertion(np)  

// np is a newly inserted prefix. 
// D is the degree of expansion. 
1: generate the bitmap of np by Make_BM(np, D) 
2: let par be the parent prefix of np 
3: let b0 b1 … bL = bm(par) where L is 2

D
-1 

4: set bi for each i such that 

5:       D(par,i) is a descendant or an ascendant of np, or np itself 

 

Fig. 8. Bitmap update procedure for the prefix insertion 

 

It is straightforward to find the k-bit added prefixes which are the descendants or the 

ancestor of np. After such k-bit added prefixes are determined, all the corresponding bits will 

be set in the bitmap. Suppose that a prefix x=000* is inserted in Fig. 9.  0000* and 0001* are 

the descendants of x, which are also 3-bit added prefixes for parent prefix 0*, i.e., 3(p, 0) and 

3(p, 1) respectively. So the bits b0b1 in the bitmap of prefix p should be set as 1, and the 

bitmap is changed from 00111011 to 11111011.  

As described above, there is no additional overhead to find the parent of the inserted prefix. 

So the number of memory accesses for bitmap update on prefix insertion is only affected by 
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Make_BM(np, D) in step 1 of Proc. 3. The total number of memory accesses is at most 2D+1-2, 

however, inserting a leaf prefix does not incur any extra memory accesses for bitmap update. 

In worst case the number of memory accesses is 14 for D=3. 
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Fig. 9. The examples for bitmap updates 

 

In order to explain the bitmap update algorithm on the prefix deletion, we introduce a new 

terminology, a bridge node. 

 

Definition 4. The bridge node of a leaf prefix p is the closest ancestor node of p which can 

remain in the trie after the deletion of p.  

 

In Fig. 9, the bridge node of r is q, because node d disappears but q still remains after the 

deletion of r. Similarly, nodes b and e disappear on deletion of s, so the bridge node of s is a. 

An algorithm to update bitmap on deletion of a prefix is described in Proc. 4 of Fig. 10. At 

first, it tries to find the parent prefix par of the deleted prefix op, and then the distance between 

op and par is compared with the degree of expansion D. 
 

Procedure 4. Update_Bitmap_Deletion(op)  

//  op is a deleted prefix. 
//  |p| is the length of prefix p. 
1: let par be the parent prefix of op  
2: if |op| - |par| ≤ D then 
3:      str ← Make_BM(op, D - (|op| - |par|)) 
4:      update bx…by in bitmap bm(par) as str, where 

5:             D(par,i) is a descendant of op, x ≤ i ≤ y 
6: else  
7:      if op is a leaf prefix then 
8:           let brg be the bridge node of op 
9:           if |brg| - |par| < D then  
10:               reset bi in bm(par), where 

11:                  D(par,i) is an ancestor of op 

 

Fig. 10. Bitmap update procedure for the prefix deletion 

 

If the distance (|op|-|par|) is not greater than D in step 2 of Proc. 4, it updates bm(par), 

especially the bits corresponding to descendants of op. The new bit string str can be obtained 

http://endic.naver.com/search.nhn?query=ancestor
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by calling Make_BM(op, D-(|op|-|par|)). Suppose q=001* is deleted in Fig. 9. Since |q| - |p| = 2 

< 3 (=D), Make_BM(q, 1) is called and it returns 10. 3(p, 2) and 3(p, 3) are descendants of 

q, so b2b3 is replaced with new string 10. Now the bitmap of p is changed from 00111011 to 

00101011.  

In case that the distance (|op|-|par|) is greater than D in step 6 of Proc. 4, bm(par) is updated 

only when op is a leaf prefix. If op is a non-leaf prefix, deletion of op does not affect bm(par). 

For example, the deletion of a non-leaf prefix t does not affect the bitmap of p in Fig. 9. In case 

that the deleted prefix op is a leaf prefix, the distance between brg and par is computed where 

brg is the bridge node of op. If the distance (|brg|-|par|) is less than D in step 9 of Proc. 4, it 

determines D(par, i) which is the ascendant of op. Since D(par, i) will be removed after the 

deletion of op, the associated bit bi in the bitmap should be changed from 1 to 0. Suppose that 

a prefix s=01001* is deleted in Fig. 9. The bridge node of s is a and the parent prefix of s is p. 

Therefore, |a| - |p| = 1 < 3 (=D). b4 in bm(p) should be set to 0 because 3(p, 4) is the ascendant 

of s. So the updated bitmap becomes 00110011. Now suppose a prefix v=011100* is deleted in 

Fig. 9. The bridge node of prefix v is f and the parent prefix of v is p. Since |f| - |p|  = 4 > 3 (=D), 

the bitmap of prefix p is not affected. 

The bridge of the deleted prefix can be determined without additional overhead in the same 

way as the parent prefix. So the number of memory accesses for bitmap update on prefix 

deletion is only affected by Make_BM(op, D-(|op|-|par|)) in step 3 of Proc. 4. Since |op|-|par| is 

at least 1, the total number of memory accesses is at most 2D-2. It implies that the bitmap 

update cost for prefix deletion is merely 6 in worst case for D=3. 

4.3 Cache Coherency for Update 

The insertion or deletion of a prefix may give rise to invalidate expanded prefixes in BMCache. 

Suppose that an expanded prefix 0101* has been cached  in Fig. 9. If a prefix 010* (or 01011*) 

is inserted to the routing table, the prefix 0101* in BMCache may cause incorrect results. For 

correct IP lookup, that prefix should be removed from BMCache.  

On insertion of a new prefix np, the bm-expanded prefixes for the parent prefix par of np 

should be considered for cache coherency. It should be checked which bit in the bitmap of par 

is changed from 0 to 1. For each changed bit, the corresponding bm-expanded prefix should be 

invalidated in BMCache. 

BMCache may contain an IP address itself as a bm-expanded prefix as described in section 

3.1. In Fig. 9, for a given IP address 010001, the matching prefix is p=0* but cannot be 

expanded to 3(p, 4) because b4 in the bitmap of p is 1. In that case the IP address itself is 

cached in BMCache. Now, suppose that prefix 010* is inserted. Then, the cached IP address 

must be removed from BMCache. Actually, all the IP addresses which are descendants of the 

inserted prefix may be removed for simplicity. The IP addresses which are not matched with 

the inserted prefix can be removed from BMCache as well, but it does not cause incorrect 

results. 

On the other hand, the deletion of prefix op from a routing table may cause removal of 

prefix op itself or its expanded prefixes in BMCache. Also, all the IP addresses covered by op 

may be removed from BMCache in the same way as the insertion. For a given IP address 

010001, in Fig. 9, the IP address itself is cached in BMCache. On deletion of prefix 0*, all the 

descendant IP addresses including 010001 may be removed from BMCache. 
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5. Performance Evaluation 

 

For our experiment, the routing tables are constructed for each cache scheme using a real 

routing table in [17]. Table 1 shows the number of prefixes in each cache scheme. For 

BMCache, there is no additional entry compared to original table. We use 8-bit bitmap, so 

there are possibly up to eight 1’s in bitmap. Table 2 shows non-leaf prefix count according to 

the number of 1’s in bitmap. The bitmap having fewer 1’s may result in better performance. In 

almost half of total non-leaf prefixes the number of bits valued at 1 is less than 5. 
 

Table 1. The number of prefixes for cache scheme 

 BMCache CPTE PPTE 

Leaf 334,166 334,166 334,166 

Non-leaf 34,438 34,438 34,438 

Expanded 0 169,930 13,433 

Total 368,604 538,534 382,037 

 

Table 2. Distribution of non-leaf prefix count according to the number of 1’s in bitmap 

  1 2 3 4 5 6 7 8 Total 

Count 

(ratio) 

5,409 

(0.16)  

4,730 

(0.14)  

1,771 

(0.05)  

5,169 

(0.15)  

1,341 

(0.04)  

1,847 

(0.05)  

1,112 

(0.03)  

13,059 

(0.38)  

34,438 

(1.00)  

 

All publicly available traces are anonymized over IP addresses for privacy, so the generated 

traces are used for our experiment instead of real traces. Anonymized traces maintain spatial 

and temporal locality of the original traces, but those include a lot of non-matching packets for 

real prefixes. We generate traces in which every IP address matches with some prefix in a real 

routing table, while they completely reflect the spatial and temporal locality of real traces. The 

characteristics of the localities are extracted from four real traces in CAIDA [18]. Note that the 

cache performance is highly dependent on those localities. 

Figures 11-14 compare cache miss ratios of six schemes using the generated traces (named 

Trace-1, Trace-2, Trace-3 and Trace-4). In those figures ‘IPcache’ represents a 32-bit full IP 

address cache. Since ‘IPcache’ stores fixed-length IP addresses, it is sufficient to use CAM 

instead of TCAM. The number of transistors in a TCAM cell is about two times more than that 

in a CAM cell. So we assume it has twice as many entries as other schemes for the same size of 

memory. Similarly, it is assumed that MPC has twice entries, because MPC consists of two 

parts, short prefix cache and IP cache, each of which occupies half size of the prefix cache for 

the same number of entries. In the experiments 8-bit bitmap is used for BMCache, i.e., the 

degree of expansion is 3. The simulation results show that the miss ratio of CPTE is generally 

lower than those of any other schemes. BMCache shows next lower miss ratio. Note that the 

routing table of BMCache has the same number of entries as original routing table because 

there is no expansion in the routing table unlike CPTE. 
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Fig. 11. Cache miss ratio (Trace-1)                              Fig. 12. Cache miss ratio (Trace-2) 
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Fig. 13. Cache miss ratio (Trace-3)                            Fig. 14. Cache miss ratio (Trace-4) 

 

Fig. 15 shows the miss ratio of BMCache according to the degree of expansion D. As D 

increases, the miss ratio becomes lower. However, the size of the bitmap will be doubled in the 

routing table whenever D increases. For example, the bitmap size is 16 bits for D = 4 while that 

is 8 bits for D = 3. 
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Fig. 15. Miss ratio according to the degree of expansion D 

 

Though CPTE has lower miss ratio than BMCache, CPTE may have a great update 

overhead because complete expansion produces a large number of children. Fig. 16 shows the 

number of expanded children for a non-leaf prefix. It shows some non-leaf prefixes have a 
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great number of expanded children. About 20% of non-leaf prefixes have more than 8 

expanded children and even 0.4% of non-leaf prefixes have more than hundred expanded 

children.  

Fig. 17 compares the update overhead of a non-leaf prefix in CPTE and BMCache. In CPTE 

insertion or deletion of a non-leaf prefix affects its immediate descendants and expanded 

children, so the overhead is estimated by total length of paths from a non-leaf node to its 

immediate descendants and expanded children. Meanwhile, in BMCache, there is no actual 

expansion in the routing table, so the update overhead of a non-leaf prefix is estimated for its 

bitmap by summing up the path length to immediate descendants, however, up to the degree of 

expansion D=3. In Fig. 17 count of non-leaf prefixes is cumulated from the highest to the 

lowest update overhead. It shows the update overhead of CPTE is higher than BMCache.  

Table 3 shows the number of the expanded children and update overhead in CPTE and 

BMCache. There is a great gap between CPTE and BMCache in the worst case update 

overhead. The update overhead of CPTE is no less than 8,680, while that of BMCache is 

merely 14. The update overhead incurs delay of lookup, so the forwarding engine should have 

sufficient resources to meet the worst case update overhead.  
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Fig. 17. Distribution of the update overhead 

 

 

Table 3. Expanded children and update overhead 

 Max. Avg. 

Expanded children (CPTE) 3,097 4.93 

Update overhead (CPTE) 8,680 18.66 

Update overhead (BMCache) 14 4.95 

6. Conclusion 

This paper proposes a new prefix caching scheme using bitmap, which shows high 

performance IP lookup as well as low update overhead. In that scheme every prefix has a 

bitmap in which each bit indicates whether the prefix can be expanded to some descendant or 

not. When an IP address is matched with a non-cacheable prefix in a routing table, its 

expanded prefix or the IP address itself is cached according to the corresponding bit in the 

bitmap. Using the bitmap any prefix can be effectively cached as the expanded one, which 

makes it possible to exploit a high degree of locality with low overhead. Since the proposed 

scheme does not increase the number of prefix entries in a routing table, cache miss penalty is 
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relatively low compared to other schemes because the lookup time usually increases as the 

number of prefixes increases in the routing table. Also, our scheme can update the routing 

table faster than any other prefix caching schemes owing to no additional prefixes and less 

update overhead of bitmaps in the routing table. 

The performance of the proposed scheme is evaluated by simulation with the real 

forwarding table and a variety of traces reflecting the characteristics of locality in real traffics. 

The simulation result shows that the cache miss ratio is slightly higher than CPTE, but is better 

than other schemes such as PPTE, NPE, and MPC. In addition, it shows that the prefix update 

in our scheme requires much lower overhead than that in CPTE. 
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