• Title/Summary/Keyword: predictive state observer

Search Result 22, Processing Time 0.028 seconds

Single Sensor Current Control for Three-Phase Voltage-Source PWM Converters Using a Predictive State Observer (예측 상태 관측기를 이용한 3상 전압 원 PWM 컨버터의 단일 센서 전류 제어)

  • 이우철;현동석;이택기
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.489-492
    • /
    • 1999
  • This paper proposes a control method for three-phase voltage-source PWM converters using only a single current sensor in the DC link. A predictive current controller for the voltage-source PWM converter is used so that all phase currents can be reconstructed in a switching period although one or two of active vectors are applied only for a short time. Compensation of the 2 step delays is also included. In this paper single sensor current control using predictive state observer will be discussed, and investigated experimentally.

  • PDF

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

Modified Finite Control Set-Model Predictive Controller (MFCS-MPC) for quasi Z-Source Inverters based on a Current Observer

  • Bakeer, Abualkasim;Ismeil, Mohamed A.;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.610-620
    • /
    • 2017
  • The Finite Control Set-Model Predictive Controller (FCS-MPC) for quasi Z-Source Inverters (qZSIs) is designed to reduce the number of sensors by proposing a current observer for the inductor current. Unlike the traditional FCS-MPC algorithm, the proposed model removes the inductor current sensor and observes the inductor current value based on the deposited prior optimized state as well as the capacitor voltage during this state. The proposed observer has been validated versus a typical MPC. Then, a comparative study between the proposed Modified Finite Control Set-Model Predictive Controller (MFCS-MPC) and a linear PID controller is provided under the same operating conditions. This study demonstrates that the dynamic response of the control objectives by MFCS-MPC is faster than that of the PID. On the other hand, the PID controller has a lower Total Harmonic Distortion (THD) when compared to the MFCS-MPC at the same average switching. Experimental results validate both methods using a DSP F28335.

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

Robust Decoupling Digital Control of Three-Phase Inverter for UPS (3상 UPS용 인버터의 강인한 비간섭 디지털제어)

  • Park, Jee-Ho;Heo, Tae-Won;Shin, Dong-Ryul;Roh, Tae-Kyun;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

A Study On Predictive State Observer For Robust Control Of DC Servo Motor (직류 서어보 전동기의 강인성 제어를 위한 예상 상태 업저어버에 관한 연구)

  • Yoon, Byung-Do;Choi, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.426-429
    • /
    • 1988
  • A Microprocessor Based Digital Control System is inherently contained a control lag for processing the control program and a data detection time lag. This two types of time lag may cause the system to become unstable. In this paper proposed predictive state observer is used to solve the two time lag problems. I-P control algorithm is used to attain deadbeat response by adjusting the observer gain to overcome the parameter variation or with disturbance. The speed response shows good performance through computer simulation.

  • PDF

Comparison of Three-Phase Voltage-Source PWM Converters Using a Single Current Sensor (단일 전류 센서를 사용한 3상 전압형 PWM 컨버터의 제어 방식 비교)

  • Lee, Woo-Cheol;Lee, Taeck-Kie;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.4
    • /
    • pp.188-200
    • /
    • 2001
  • This paper presents a technique for reconstructing converter line currents using the information from a single current sensor in the DC-link for voltage-source PWM converters. When three-Phase input currents cannot be reconstructed, three methods to acquire the input current are compared. Two of them are methods of modifying the switching state (I, II), another is a method of using the predictive state observer. Also, compensation of sampling delay, and a simultaneous sample value of input currents in the center of a switching period are included. Suitable criteria for the comparison are identified, and the differences in the performance of these methods are investigated through experimental results for a typical V-S PWM converter rated at 10kVA.

  • PDF

Receding horizon predictive controls and generalized predictive controls with their equivalance and stability

  • Kwon, Wook-Hyun;Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.49-55
    • /
    • 1992
  • In this paper, we developed a Receding Horizon Predictive Control for Stochastic state space models(RHPCS). RHPCS was designed to minimize a quadratic cost function. RHPCS consists of Receding Horizon Tracking Control(RHTC) and a state observer. It was shown that RHPCS is equivalent to Generalized Predictive Control(GPC) when the underlying state space model is equivalent to the I/O model used in the design of GPC. The equivalence between GPC and RHPCS was shown through. the comparison of the transfer functions of the two controllers. RHPCS provides a time-invarient optimal control law for systems for which GPC can not be used. The stability properties of RHPCS was derived. From the GPC's equivalence to RHPCS, the stability properties of GPC were shown to be the same as those for RHTC.

  • PDF

Current Control of Three-Phase PWM Rectifiers without Phase Current Sensors (상전류 센서없는 3상 PWM 3상 정류기의 전류제어)

  • Im, Dae-Sik;Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.123-129
    • /
    • 2000
  • This paper proposes a novel current control method of three-phase PWM rectifiers using estimated currents without phase current sensors. The phase currents are reconstructed from switching states of the rectifier and the measured dc output currents. To eliminate the calculation time delay effect of the microprosessor, the current at the next sampling instant are predicted by a predictive state observer and then are used for feedback control. Experimental results show that the control performance of the proposed system is almost the same as that of the phase current sensor-based system.

  • PDF

Single Sensor Current Control of a Three-Phase Voltage-Source PWM Converter Using Predictive State Observer (예측 상태 관측기를 이용한 3상 전압 원 PWM 컨버터의 단일 센서 전류 제어)

  • 이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.249-256
    • /
    • 1999
  • 본 논문에서는 DC link단에 단일 전류 센서를 사용한 3상 전압 원 PWM 컨버터의 제어방법에 대해서 제안하고, DC link 전류로부터 3상 전류를 재 구축하는 PWM 변조 전략을 제시한다. 단일 전류 센서를 사용하여 3상 전류를 재 구축시 문제점은 2개의 유효 벡터중 1개 또는 2개의 유효벡터가 아주 짧은 시간 동안 인가 되었을 때로 이 경우에는 3상 전류를 적절히 재 구축할 수 없게 된다. 이런 경우에는 예측 전류 제어기를 사용하여 모든 동작 조건에서 믿을만한 3상 전류를 재 구축한다. 또한 디지털 제어로 인한 지연에 대한 보상도 제시된다. 본 논문에서는 3상 PWM 컨버터 제어시 예측 상태 관측기를 사용한 단일 센서 전류 제어가 논의되며 실험 결과로 입증된다.

  • PDF