• Title/Summary/Keyword: prediction technique

Search Result 2,086, Processing Time 0.028 seconds

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

Study on the Prediction Technique of Vehicle Performance using Parameter Analysis (파라미터 해석을 통한 차량 성능 예측 기법 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook;Kim, Jin-Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.647-653
    • /
    • 2009
  • Taguchi parameter design is an approach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used SN (Signal to Noise) ratio to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. This paper describes the prediction technique of vehicle performance using parameter analysis to reduce man hour and test development period as well as to achieve stable NVH performance. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce the time needed to develop better vehicles.

  • PDF

(Prediction of reduction goals : deterministic approach) (리덕션 골의 예상: 결정적인 접근 방법)

  • 이경옥
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.461-465
    • /
    • 2003
  • The technique of reduction goal prediction in LR parsing has several applications such as the computation of right context. An LR parser generating the set of pre-determined reduction goals was previously suggested. The set approach is nondeterministic, and so it is inappropriate in some applications. This paper suggests a deterministic technique to give a uniquely predictable reduction symbol.

Detection and Tracking of Time Varying Power System Frequencies and Harmonics using Subband Adaptive Filtering (적응 부밴드 필터링을 이용한 전력계통 시변 주파수와 고조파 검출 및 추적)

  • Sohn, Sang-Wook;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.679-687
    • /
    • 2009
  • In this paper, a subband filtering and adaptive prediction technique for analyzing harmonics in power systems is presented. In this method, the filter banks are designed to decompose odd and even order harmonics separately. The adaptive prediction has been employed reduce the transient and white noise effect in time varying harmonics detecting and tracking. The frequencies and amplitudes of the decomposed harmonics are estimated by recursive algorithm. To demonstrate the performances of the developed technique, computer simulations to the signal with the time-varying frequency and THD are carried out.

Deep Learning based Inter Prediction Technique for Video Coding (비디오 압축을 위한 딥러닝 기반 화면 간 예측 부호화 기법)

  • Lee, Jeongkyung;Kim, Nayoung;Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.718-721
    • /
    • 2018
  • This paper presents an inter-prediction technique using deep learning, where a virtual reference frame of the current frame is synthesized by using the reconstructed frames to improve coding efficiency. Experimental results demonstrate that the proposed algorithm provides 1.9% BD-rate reduction on average as compared to HEVC reference software in the Random Access condition.

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

Prediction and measurement of propagation path loss in indoor microcellular environments (실내 마이크로셀 환경에서 전파 경로손실의 예측과 측정)

  • 정백호;김채영;이숭복
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.1-8
    • /
    • 1997
  • A prediction model is proposed to describe the path loss in propagation environment of indoor microcell. This model includes the lineal corridor for line--of-sight(LOS) and T-shaped corridor for non-line-of-sight(NLOS). In computation of receiving power the ray tracing technique based on image method is utilized and also reflected waves bounced on the walls and ceilings are considered. To check validity of the computed resuls cross checks between the predicted and measured are being made, which shows a close agreement for LOS case whereas somewhat disagreement for NLOS case. UTD technique is incorporated with propagation path determination algorithm in the treatment of NLOS case.

  • PDF

Optimization of Device Process Parameters for GaAs-AlGaAs Multiple Quantum Well Avalanche Photodiodes Using Genetic Algorithms (유전 알고리즘을 이용한 다중 양자 우물 구조의 갈륨비소 광수신소자 공정변수의 최적화)

  • 김의승;오창훈;이서구;이봉용;이상렬;명재민;윤일구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.241-245
    • /
    • 2001
  • In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.

  • PDF

The Urban Fire Prediction Mapping Technique based on GIS Spatial Statistics (GIS 공간통계를 이용한 도심화재예측지도 제작기법 탐색)

  • Kim, Jin-Taek;Um, Jung-Sup
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.14-23
    • /
    • 2007
  • In this thesis, we analysed urban fires and developed the predictive mapping technique by using GIS and spatial statistics. It presented the correlation between the fire data of last 5 years ($2001{\sim}2005$) and the factor of civilization environment in Daegu city. We produced a model of fire hazard predictive map by analyzing uncertainty of fire with the quadrat analysis and the poisson distribution.

An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP (성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로)

  • Lim Se-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF