DOI QR코드

DOI QR Code

Deep Learning based Inter Prediction Technique for Video Coding

비디오 압축을 위한 딥러닝 기반 화면 간 예측 부호화 기법

  • Lee, Jeongkyung (Department of Electronic and Electrical Engineering, Ewha W. University) ;
  • Kim, Nayoung (Department of Electronic and Electrical Engineering, Ewha W. University) ;
  • Kang, Je-Won (Department of Electronic and Electrical Engineering, Ewha W. University)
  • 이정경 (이화여자대학교 엘텍공과대학 전자전기공학과) ;
  • 김나영 (이화여자대학교 엘텍공과대학 전자전기공학과) ;
  • 강제원 (이화여자대학교 엘텍공과대학 전자전기공학과)
  • Received : 2018.08.07
  • Accepted : 2018.09.10
  • Published : 2018.09.30

Abstract

This paper presents an inter-prediction technique using deep learning, where a virtual reference frame of the current frame is synthesized by using the reconstructed frames to improve coding efficiency. Experimental results demonstrate that the proposed algorithm provides 1.9% BD-rate reduction on average as compared to HEVC reference software in the Random Access condition.

최근 차세대 국제 비디오 압축 표준 제정에 딥러닝을 이용하여 비디오 부호화 효율을 향상시키기 위한 다양한 시도가 이루어지고 있다. 본 논문에서는 참조프레임 리스트에 포함된 복원 프레임을 이용하여 현재 프레임의 가상 참조프레임을 딥러닝으로 생성하여 화면 간 예측 부호화에 이용하는 알고리즘을 제안한다. 실험에 따르면 제안 알고리즘은 HEVC 참조 소프트웨어 대비 Random Access 실험 환경에서 평균 1.9%의 BD-rate 감소 효율을 제공한다.

Keywords

References

  1. S. Liu, L. Wang, P. Wu, and H. Yang, "JVET AHG report 9: Neural Networks in Video Coding (AHG9)" in ISO/IEC/JTC1/SC29/ WG11 and ITU-T SG16 Q.6, Apr. 2018.
  2. S.H Cho, Y. H. Kim, W. Lim, H.W. Kim, and C.S. Choi, "A Technical Analysis on Deep Learning based Image and Video Compression", Journal of Broadcast Engineering, Vol. 23, No. 3, 383-394, May 2018 https://doi.org/10.5909/JBE.2018.23.3.383
  3. W. Park and M. Kim, "CNN-based in-loop filtering for coding efficiency improvement," IEEE Image, Video, and Multidimensional Signal Processing Workshop, 2016.
  4. J. Kang, S. Kim, and K. M. Lee, "Multi-modal Multi-scale Convolutional Neural Network based In-loop Filter Design for Next Generation Video Codec," IEEE International Conference on Image Processing, 2017.
  5. J.K. Lee and J.-W. Kang, "Video coding technique based on deep learning", 2018 KIBME Summer Conference.
  6. B. D. Brabandere, X. Jia, T. Tuytelaars, and L. V. Gool, "Dynamic filter networks," Neural Information Processing Systems (NIPS). 2016.
  7. S. Niklaus, L. Mai, and F. Liu. "Video frame interpolation via adaptive separable convolution," International Conference on Computer Vision, 2017.
  8. HM16.9 software, available at: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.9
  9. F. Bossen, "JCTVC-L1100: Common test conditions and software reference configurations" in ISO/IEC/JTC1/SC29/WG11 and ITU-T SG16 Q.6, Jan.2013.