In, Young-Yong;Lee, Sung-Kwang;Kim, Pil-Je;No, Kyoung-Tai
Bulletin of the Korean Chemical Society
/
v.33
no.2
/
pp.613-619
/
2012
We applied several machine learning methods for developing QSAR models for prediction of acute toxicity to fathead minnow. The multiple linear regression (MLR) and artificial neural network (ANN) method were applied to predict 96 h $LC_{50}$ (median lethal concentration) of 555 chemical compounds. Molecular descriptors based on 2D chemical structure were calculated by PreADMET program. The recursive partitioning (RP) model was used for grouping of mode of actions as reactive or narcosis, followed by MLR method of chemicals within the same mode of action. The MLR, ANN, and two RP-MLR models possessed correlation coefficients ($R^2$) as 0.553, 0.618, 0.632, and 0.605 on test set, respectively. The consensus model of ANN and two RP-MLR models was used as the best model on training set and showed good predictivity ($R^2$=0.663) on the test set.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.29
no.2
/
pp.141-158
/
2019
Objectives: An adverse outcome pathway is a biological pathway that disturbs homeostasis and causes toxicity. It is a conceptual framework for organizing existing biological knowledge and consists of the molecular initiating event, key event, and adverse output. The AOP concept provides intuitive risk identification that can be helpful in evaluating the carcinogenicity of chemicals and in the prevention of cancer through the assessment of chemical carcinogenicity predictions. Methods: We reviewed various papers and books related to the application of AOPs for the prevention of occupational cancer. We mainly used the internet to search for the necessary research data and information, such as via Google scholar(http://scholar.google.com), ScienceDirect(www.sciencedirect.com), Scopus(www.scopus. com), NDSL(http: //www.ndsl.kr/index.do) and PubMed(http://www.ncbi.nlm.nih.gov/pubmed). The key terms searched were "adverse outcome pathway," "toxicology," "risk assessment," "human exposure," "worker," "nanoparticle," "applications," and "occupational safety and health," among others. Results: Since it focused on the current state of AOP for the prediction of toxicity from chemical exposure at work and prospects for industrial health in the context of the AOP concept, respiratory and nanomaterial hazard assessments. AOP provides an intuitive understanding of the toxicity of chemicals as a conceptual means, and it works toward accurately predicting chemical toxicity. The AOP technique has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment. AOP can be applied to the assessment of chemical carcinogenicity along with efforts to understand the effects of chronic toxic chemicals in workplaces. Based on these predictive tools, it could be possible to bring about a breakthrough in the prevention of occupational and environmental cancer. Conclusions: The AOP tool has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment and has been widely used in the field of chemical risk assessment and the evaluation of carcinogenicity at work. It will be a useful tool for prediction, and it is possible that it can help bring about a breakthrough in the prevention of occupational and environmental cancer.
Lee, Jin Wuk;Park, Seonyeong;Jang, Seok-Won;Lee, Sanggyu;Moon, Sanga;Kim, Hyunji;Kim, Pilje;Yu, Seung Do;Seong, Chang Ho
Journal of Environmental Health Sciences
/
v.45
no.5
/
pp.457-464
/
2019
Objectives: Quantitative structure-activity relationship (QSAR) is one of the effective alternatives to animal testing, but its credibility in terms of toxicity prediction has been questionable. Thus, this work aims to evaluate its predictive capacity and find ways of improving its credibility. Methods: Using $TOPKAT^{(R)}$, OECD toolbox, and $Derek^{(R)}$, all of which have been applied world-wide in the research, industrial, and regulatory fields, an analysis of prediction credibility markers including accuracy (A), sensitivity (S), specificity (SP), false negative (FN), and false positive (FP) was conducted. Results: The multi-application of QSARs elevated the precision credibility relative to individual applications of QSARs. Moreover, we found that the type of chemical structure affects the credibility of markers significantly. Conclusions: The credibility of individual QSAR is insufficient for both the prediction of chemical toxicity and regulation of hazardous chemicals. Thus, to increase the credibility, multi-QSAR application, and compensation of the prediction deviation by chemical structure are required.
Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations.
Background: Organophosphorus flame retardants (OPFRs) are a group of chemical substances used in building materials and plastic products to suppress or mitigate the combustion of materials. Although OPFRs are generally used in mixed form, information on their mixture toxicity is quite scarce. Objectives: This study aims to elucidate the toxicity and determine the types of interaction (e.g., synergistic, additive, and antagonistic effect) of OPFRs mixtures. Methods: Nine organophosphorus flame retardants, including TEHP (tris(2-ethylhexyl) phosphate) and TDCPP (tris(1,3-dichloro-2-propyl) phosphate), were selected based on indoor dust measurement data in South Korea. Nine OPFRs were exposed to the luminescent bacteria Aliivibrio fischeri for 30 minutes and the human hepatocyte cell line HepG2 for 48 hours. Chemicals with significant toxicity were only used for mixture toxicity tests in HepG2. In addition, the observed ECx values were compared with the predicted toxicity values in the CA (concentration addition) prediction model, and the MDR (model deviation ratio) was calculated to determine the type of interaction. Results: Only four chemicals showed significant toxicity in the luminescent bacteria assays. However, EC50 values were derived for seven out of nine OPFRs in the HepG2 assays. In the HepG2 assays, the highest to lowest EC50 were in the order of the molecular weight of the target chemicals. In the further mixture tests, most binary mixtures show additive interactions except for the two combinations that have TPhP (triphenyl phosphate), i.e., TPhP and TDCPP, and TPhP and TBOEP (tris(2-butoxyethyl) phosphate). Conclusions: Our data shows OPFR mixtures usually have additivity; however, more research is needed to find out the reason for the synergistic effect of TPhP. Also, the mixture experimental dataset can be used as a training and validation set for developing the mixture toxicity prediction model as a further step.
The current vision of toxicogenomics is the development of methods or platforms to predict toxicity of un characterized chemicals by using '-omics' information in pre-clinical stage. Because each chemical has different ADME (absorption, distribution, mechanism, excretion) and experimental animals have lots of variation, precise prediction of chemical's toxicity based on '-omics' information and toxicity data of known chemicals is very difficult problem. So, the importance of bioinformatics is more emphasized on toxicogenomics than other functional genomics studies because these problems can not be solved only with experiments. Thus, toxicoinformatics covers all information-based analytical methods from gene expression (bioinformatics) to chemical structures (cheminformatics) and it also deals with the integration of wide range of experimental data for further extensive analyses. In this review, the overall strategy to toxicoinformatics is discussed.
Kim, Ki-Woong;Won, Yong Lim;Hong, Mun Ki;Jo, Jihoon;Lee, Sung Kwang
Bulletin of the Korean Chemical Society
/
v.35
no.12
/
pp.3637-3641
/
2014
In this study, we analyzed the toxicity of mixtures of dimethylformamide (DMF) and methyl ethyl ketone (MEK) or DMF and toluene (TOL) and predicted their toxicity using quantitative structure-activity relationships (QSAR). A QSAR model for single substances and mixtures was analyzed using multiple linear regression (MLR) by taking into account the statistical parameters between the observed and predicted $EC_{50}$. After preprocessing, the best subsets of descriptors in the learning methods were determined using a 5-fold cross-validation method. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP), flash point (FP), low explosion limit (LEL), and octanol/water partition coefficient (Pow) were observed between the single substances and the mixtures. The $EC_{50}$ of the mixture of DMF and TOL was significantly lower than that of DMF. The mixture toxicity was directly related to the mixing ratio of TOL and MEK (MLR $EC_{50}$ equation = $1.76997-1.12249{\times}TOL+1.21045{\times}MEK$), as well as to SG, VP, and LEL (MLR equation $EC_{50}=15.44388-19.84549{\times}SG+0.05091{\times}VP+1.85846{\times}LEL$). These results show that QSAR-based models can be used to quantitatively predict the toxicity of mixtures used in manufacturing industries.
Kim, Jungkon;Seo, Jung-Kwan;Kim, Taksoo;Kim, Hyun-Kyung;Park, Sanghee;Kim, Pil-Je
Journal of Environmental Health Sciences
/
v.39
no.2
/
pp.130-137
/
2013
Objectives: The OECD QSAR Application Toolbox was developed by the Organisation for Economic Cooperation and Development (OECD) to facilitate the practical use of QSAR approaches in regulatory contexts as well as to reduce the need for additional animal testing. In this study, human health and the ecotoxicity of chemicals were predicted by applying the OECD QSAR Application Toolbox and the results were compared with experimental data in order to evaluate the applicability of this program. Methods: Read-across, trend analysis, and QSAR of OECD QSAR Application Toolbox were used for the prediction of toxicity. Results: The toxicity prediction was conducted on 6,354 chemicals for which toxicity data have been produced on the six endpoints of skin sensitization, skin irritation, eye irritation, mutagenicity, and acute toxicities of fish and Daphnia. From the total of 6,354, we obtained prediction results for 1,621 chemicals (25.5%). Conclusions: The predicted properties of mutagenicity, skin sensitization, and acute aquatic toxicities were reasonably good when compared with experimental data, but other endpoints were not due to the limitation of applicable chemical groups.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.31
no.3
/
pp.185-193
/
2021
Objectives: Inhalation toxicity testing of chemical substances to identify carcinogenicity requires a long time and considerable cost, so the selection of test candidates is a very important aspect. This study was performed to determine optimal procedures for selecting carcinogenic inhalation toxicity test substances as conducted by the Occupational Safety and Health Research Institute (OSHRI). Methods: At the beginning, a database was constructed containing complex information such as usage amount, hazard, carcinogenicity prediction, and testability in order to select chemicals requiring carcinogenicity testing. Selection of test substances was carried out with priority given to usage, carcinogenicity, and testability. Results: Chemicals used in large quantities in industrial fields and strongly suspected of carcinogenicity were winnowed down to 12 substances, and these substances were scheduled for future testing by OSHRI. Conclusions: For the stable and reliable operation of carcinogenicity tests as conducted by OSHRI, this study standardized the procedures for selecting carcinogenicity test substances and suggested the introduction of various carcinogenicity prediction techniques.
The purpose of this study is to propose a quantitative toxicity endpoint distance suitable for the initial response of firefighters by comparing and analyzing the commonly applied toxic level of concern (T-LOC), specifically emergency response planning guidelines (ERPG), acute exposure guideline levels (AEGL), and immediately dangerous to life or health (IDLH). This is to protect the fire brigade, which responds to toxic chemical accidents first during the golden time. Using areal locations of hazardous atmospheres, a damage prediction program, the amount of leakage for both acidic and basic substances, along with the endpoint distance, were analyzed for alternative accident and worst-case accident scenarios. The results showed that the toxicity endpoint distance, serving as a compromise between Level-3 and Level-2 of T-LOC, was longer than ERPG-3 and shorter than ERPG-2 with IDLH, while its values were analyzed in the order of ERPG-2, AEGL-2, IDLH, AEGL-3, and ERPG-3. It is suggested that the application of IDLH in an emergency (red card) and ERPG-2 endpoint distance in a non-emergency (non-red card) can be utilized for the initial response of the fire brigade.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.