Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.12.3637

Prediction of the Toxicity of Dimethylformamide, Methyl Ethyl Ketone, and Toluene Mixtures by QSAR Modeling  

Kim, Ki-Woong (Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency)
Won, Yong Lim (Occupational Health Research Department, Occupational Safety and Health Research Institute, KOSHA)
Hong, Mun Ki (Chemical Safety and Health Research Center, Occupational Safety and Health Research Institute, KOSHA)
Jo, Jihoon (Chemical Safety and Health Research Center, Occupational Safety and Health Research Institute, KOSHA)
Lee, Sung Kwang (Department of Chemistry, Hannam University)
Publication Information
Abstract
In this study, we analyzed the toxicity of mixtures of dimethylformamide (DMF) and methyl ethyl ketone (MEK) or DMF and toluene (TOL) and predicted their toxicity using quantitative structure-activity relationships (QSAR). A QSAR model for single substances and mixtures was analyzed using multiple linear regression (MLR) by taking into account the statistical parameters between the observed and predicted $EC_{50}$. After preprocessing, the best subsets of descriptors in the learning methods were determined using a 5-fold cross-validation method. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP), flash point (FP), low explosion limit (LEL), and octanol/water partition coefficient (Pow) were observed between the single substances and the mixtures. The $EC_{50}$ of the mixture of DMF and TOL was significantly lower than that of DMF. The mixture toxicity was directly related to the mixing ratio of TOL and MEK (MLR $EC_{50}$ equation = $1.76997-1.12249{\times}TOL+1.21045{\times}MEK$), as well as to SG, VP, and LEL (MLR equation $EC_{50}=15.44388-19.84549{\times}SG+0.05091{\times}VP+1.85846{\times}LEL$). These results show that QSAR-based models can be used to quantitatively predict the toxicity of mixtures used in manufacturing industries.
Keywords
QSAR; Chemical mixtures; Toxicity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Logan, D. T.; Wilson, H. T. Environ. Toxicol. Chem. 1995, 14(2), 351.   DOI
2 Technical Guidance Document in Support of commision Directive 93/67/EEC on Risk Assessment for New Nortifed Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances, European Commission, 1996, Part III, Brussels, Belgium.
3 Chen, J.; Liao, Y.; Zhao, Y.; Wang, L.; Lu, G.; Zhao, T. Bull. Environ. Contam. Toxicol. 1996, 57(1), 77.   DOI
4 Lin, Z. Y. H.; Huang, L.; Feng, J.; Wang, L. Chin. Sci. Bull. 2001, 46(17), 1422.   DOI
5 Lin, Z. Y. H.; Huang, L.; Feng, J.; Wang, L. Environ. Chem. 2001, 20, 139.
6 Lin, Z.; Yu, H.; Wei, D.; Wang, G.; Feng, J.; Wang, L. Chemosphere 2002, 46(2), 305.   DOI
7 Chan, K.; Jensen, N.; O'Brien, P. J. J. Appl. Toxicol. 2008, 28(5), 608.   DOI
8 White paper of Environment, Ministry of Environment (MoE), 2012; p 261.
9 Podlogar, B. L.; Muegge, I.; Brice, L. J. Curr. Opin. Drug Discov. Devel. 2001, 4(1), 102.
10 Concentration limits of flammability of chemicals (vapors and gases), American Standard Test Method (ASTM) ASTM E 681-09, 2009.
11 Standard for test of risk and hazardous of industrial chemical substances, Ministry of Employment and Labor's official notice No. 2009-38, Ministry of Employment and Labor, Gwacheon (Korea), 2009.
12 IPCS, Dimethylformamide. Environmental Health Creteria 114, WHO, Genev a, 1991; p 21.
13 Robinson, P.; MacDonell, M. Environ. Toxicol. Pharmacol. 2004, 18, 201.   DOI
14 Calabrese, E. J. Multiple Chemical Interactions; Lewis Pusblisher, Chelsea, MI, USA, 1991.
15 Schultz, T. W.; Cronin, M. T. D.; Netzeva, T. I. J. Mol. Struct. THEOCHEM 2003, 622(1-2), 23.   DOI
16 Pohl, H. R.; Ruiz, P.; Scinicariello, F.; Mumtaz, M. M. Regul. Toxicol. Pharm. 2012, 64(1), 134.   DOI
17 Todeschini R.; Consonni, V.; Molecular Descriptors for Chemoinformatic; Wiley-VCH Verlag: GmbH & Co. kGaA: 2009; Vol. I.
18 Katritzky, A. R.; Fara, D. C.; Petrukhin, R. O.; Tatham, D. B.; Maran, U.; Lomaka, A.; Karelson, M. Curr. Top. Med. Chem. 2002, 2(12), 1333.   DOI
19 Luan, F.; Xu, X.; Liu, H.; Cordeiro, M. N. D. S. Chemosphere 2013, 90(6), 1980.   DOI
20 Determination of boling temperature for chemical agents, Korean Standard (KS) Method KSM 1072-2, 2007.
21 Lin, Z.; Du, J.; Yin, K.; Wang, L.; Yu, H. Chemosphere 2004, 54(11), 1691.   DOI
22 Test methods for density and relative density of chemical products, Korean Standard (KS) Method KSM 0004, 1977.
23 Petroleum products and crude petroleum-Determination of vapour pressure-Reid method, Korean Standard (KS) Method KS M ISO 3007, 2012.
24 Testing methods for flash point of crude oil and petroleum products-Determination of flash point-Tag closed cup method, Korean Standard (KS) Method KS M 2010, 2008.
25 Kim, K. W.; Won, Y. L.; Lee, J.-S.; Han, I.-S.; Lee, S.-H. J. Korean Soc. Occup. Environ. Hyg. 2014, 24(2), 238.   DOI
26 Threshold Limit Values for Chemical Substances and Physical Agents & Biological Indices, American Conference of Governmental Industrial Hygienists (ACGIH), 2013.
27 Raymond, S. H.; Yang, R. S. T.; Daniel, L.; Gustafson, Julie Campain, Stephen, A.; Benjamin, Henk, J. M.; Verhaar, Moiz M. Mumtaz, Environ. Health Perspect. 1998, 106(6), 1385.   DOI
28 Kim, K. W.; Chung, Y. H. Toxicol. Res. 2013, 29(3), 187.   DOI
29 Bull, R. J.; Sasser, L. B.; Lei, X. C. Toxicology 2004, 199(2-3), 169.   DOI
30 European Inventory of Existing Commercial Substances, Commission of the European Communities, Off. J. Eur. Communities C146A, 1990.