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We applied several machine learning methods for developing QSAR models for prediction of acute toxicity to

fathead minnow. The multiple linear regression (MLR) and artificial neural network (ANN) method were

applied to predict 96 h LC50 (median lethal concentration) of 555 chemical compounds. Molecular descriptors

based on 2D chemical structure were calculated by PreADMET program. The recursive partitioning (RP)

model was used for grouping of mode of actions as reactive or narcosis, followed by MLR method of chemicals

within the same mode of action. The MLR, ANN, and two RP-MLR models possessed correlation coefficients

(R2) as 0.553, 0.618, 0.632, and 0.605 on test set, respectively. The consensus model of ANN and two RP-MLR

models was used as the best model on training set and showed good predictivity (R2=0.663) on the test set. 
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Introduction

Quantitative Structure-Activity Relationships (QSARs)

have currently gained enormous importance in the field of

environmental science as adoption of REACh (Registration,

Evaluation and Authorization of Chemicals) legislation in

EU. As QSAR could be useful in reducing time and cost of

experiments and animals testing, many researchers have

developed the method to prioritize untested chemicals for

risk assessment and to fill data gaps for regulatory purposes.1

Risk assessment for aquatic ecosystems is assessed by

acute toxicity of algae, daphnia, and fish in accordance with

OECD guidelines. Especially, fish is important as a bio-

logical model in aquatic toxicology studies as it represents

one of the trophic levels of the aquatic food web. US

Environmental Protection Agency (EPA) produced acute

toxicity data of fathead minnow, which later became the

most widely used small fish model for regulatory ecotoxi-

cology, with respect to mode of action.2 Several researchers

have used the EPA data to develop various QSAR models by

group contribution method,3,4 solvation parameter model,5

artificial neural network6-9 and GA-MLR(genetic algorithm-

multiple linear regression).10 Previous results of QSAR

studies for acute toxicity of fathead minnow are summarized

in Table 1. The models can be divided into two patterns;

local models based QSAR and global QSAR. Local models

based QSAR is mainly employed to build local models for

each substructure or mode of action (MOA) and subsequent-

ly combine local models into a single model. Generally,

local model is considered more confidential than global

model due to smaller applicability domain. However, it is

difficult to accurately predict the toxicity of unclear chemicals

that have more than one substructures or misclassified MOA.

Global QSAR is employed to build a model of diverse

chemicals with various mechanisms. That can provide a

simple and intuitive understanding of structural effects of

chemicals and global toxicity independent of MOA.11 

In this study, we present QSAR models for acute toxicity

prediction of compounds with a wide range of diversity on

fathead minnow. We have employed several methods for

deriving reliable prediction of QSAR models. One of them is

the consensus model that uses a number of different QSAR

models for each endpoint. Empolyment of such methods can

limit the possibility of error from a QSAR by cross checking

the results with other QSARs. Another is the performance

investigation of models by comparing and integrating local

Table 1. Summary of recent QSAR studies to fathead minnow

Authors Used descriptors 
Statistical 

method
MOA 

No. of compounds R2

training test training test

Gini et al.
6 various descriptors from various software NN/MLR

Y (implicitly 

considered)
454 114 - 0.760

Mazzatorta et al.7 physico-chemcial, tolopoligal descriptors Fuzzy-NN N 392 170 0.70 0.31

Mazzatorta et al.
8 physico-chemcial, tolopoligal descriptors NN N 388 166 0.688 -

Mazzatorta et al.
9 physico-chemcial, tolopoligal descriptors CP ANN N 282 286 0.97 0.56
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model based QSAR and global QSAR approaches. 

Model Development

Experimental Data. The procedure of model develop-

ment is depicted in Figure 1. In this study, we have used EPA

Fathead Minnow Acute Toxicity Database with experimental

values for the median lethal concentration for 50% of a

population of fathead minnow within 96 h (96 h LC50,

mmol/L) collected and reviewed by the Mid-Continent

Ecology Division of the U.S. EPA’s National Health and

Environmental Effects Research Laboratory.12 It can be used

as good training set for developing predictive QSARs of

toxicity that contain mode of action information. Generally,

four classes of fish acute toxicity have been classified by the

European Community legislation as shown in Table 2.13

The EPA fathead minnow dataset14 contains 617 chemicals

including organic, inorganic, and organometal chemicals.

Inorganic molecules, organometal molecules, salt containing

molecules, dimmer, and undefined structures were excluded

from the original EPA data. The final dataset included 555

organic compounds as training set for developing the models

and endpoint values were expressed as –log(mmol/L). 

Molecular Descriptors. The molecular descriptors were

computed using PreADMET v2.0 program.15 An initial set

of 228 2D descriptors was used to select useful those for the

prediction. The descriptors consisted of 8 constitutional

descriptors, 12 geometrical descriptors, 1 physicochemical

descriptor, and 207 topological descriptors. In order to

reduce the dimensionality of variables, objective descriptors

reduction was carried out in the following way. We excluded

the descriptors which had identical or missing values and

possessed low correlation with given toxicity (R2 < 0.1) from

the original pool of descriptors. Finally, 95 descriptors were

used in the following calculations.

Splitting of Data Set. Toxicity data set of chemicals was

split into a training, validation and test set based on sphere-

exclusion algorithms16 using in-house program. The sphere-

exclusion method (SEM) provides the sampling of re-

presentative training set from the whole data set and can

control the size of the training set by using different sphere

radius values. The distance of SEM was generated from the

score of principal components explained over 90% of the

total variance of all descriptors. In this study, the splitting

ratio between the training and the test compounds was set to

4:1. We also tried to divide them into the training and

validation set for neural net learning with the ratio of 3:1. 

Multiple Linear Regressions (MLR). The first step of

this study involved the development of a multiple linear

regression model for the entire training data. To determine

the optimal subset of descriptors, we generated MLR equa-

tions based on all the possible combinations of the 95

descriptors. The number of descriptors in the MLR equations

varied from 1 to 5. The best result of the MLR model is

summarized in Table 3. The robustness of the models and

their internal predictability were evaluated by test set. The

computation of all the MLR models from one to five

descriptors took about 12 hours for execution on a personal

computer (Core2Duo 6600, 2GB RAM)). All the statistical

analyses of the obtained MLR models were performed using

the SAS JMP package(v8.0, SAS Institue Inc, Cary, NC,

USA). 

Artificial Neural Network (ANN). A feed-forward, three-

layer network with Rprop (Resilient back-propagation)

algorithm17 as training algorithm was used to make non-

Table 2. EC Classification for fish (Directive 92/32EEC Annex VI
Point 5.1)

Class LC50 dangerous for the environment

I < 1 mg/L very toxic to aquatic organisms

II 1-10 mg/L toxic to aquatic organisms

III 10-100 mg/L harmful to aquatic organisms

IV > 100 mg/L in the aquatic environment

Figure 1. Schematic representation of the QSAR procedure for
the prediction of acute fish toxicity. 

Table 3. Comparative statistical performance of developed QSAR
models

Method
Classified 

Group

Training set Test set

N R2 a MAEb N R2 a MAEb

MLR

(Model 1)
- 445 0.712 0.557 110 0.553 0.523

ANNc

(Model 2)
- 445 0.776 0.499 110 0.618 0.478

RP(reactive)

-MLR

(Model 3)

reactive 119 0.755 0.623 32 0.552 0.610

the others 326 0.741 0.510 78 0.686 0.431 

all 445 0.746 0.536 110 0.632 0.483

RP(narcosis)

-MLR

(Model 4)

narcosis 260 0.758 0.435 85 0.534 0.476

the others 185 0.704 0.609 25 0.730 0.493

all 445 0.758 0.506 110 0.605 0.480

aR2: coefficient of determination. bMAE: mean absolute error. cFor ANN,
original training set was divided into two sets as training and validation
set. The validation set was used to prevent over-fitting. The number of
compounds in training and validation sets was 334, and 111,
respectively. The correlation coefficients (R2) of training and validation
set were 0.80 and 0.62. The number of compounds and results in Table 3
were derived from these two sets.
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linear model. Rprop algorithm in comparison with general

back-propagation method can be advantageous for two

reasons; (a) fast convergence of training and validation set

rather than online or batch weight updated back-propagation

method; and (b) no choice of parameters such as learning

rate and momentum is needed to obtain optimal condition. In

this study, the top ranked 10000 equations from MLR

models were selected to calculate ANN. The performance of

ANN was evaluated by examining R2 for the training set, the

validation set, and the test set. 

Recursive Partitioning (RP)-MLR. Acute toxicity com-

piled in the EPAFHM data is classified according to 11 types

of MOAs such as narcosis, reactivity, etc.12 Therefore, based

on MOA, it is possible to build classification model for fish

toxicity. Generally, it is agreed that QSAR model is suitable

to predict chemicals within same MOA (mode of action),

because it covers a more similar chemical domain. In order

to develop MOA-based QSAR model, it is previously

required to classify MOA of chemicals prior to local QSAR

modeling. In this study, we tried to approach RP models of

two types; one type classify narcosis group from other

groups, and another type classify reactive group from other

groups in the first step. The next was to build the local MLR

model for narcosis and reactive group classified by RP

model. The RP calculation was executed with cerius2.18

Consensus Modeling. The consensus model, which can

be derived by calculating average results for each model,

might provide better complementary results than every

individual model. In this study, we tried to test the validity

and performance of 4 kinds of consensus models with

combination of MLR, ANN and 2 RP-MLR models. 

Results and Discussion

The QSAR models for acute fish toxicity were developed

by using MLR, ANN, and two RP-MLRs. The criterions for

model selection were the R2 for the training set and the test

set. 

MLR Result. Among all the MLR equations based on all

the possible combinations of the 95 descriptors, model 1

showed high stability for the regression equation owing to

high R2 value of the training and test set. The descriptors in

Table 4. List of descriptors for MLR, ANN and RP-MLR models

Model Descriptor name Description

MLR model

(Model 1)

AlogP98 Calculated logP by Ghose’s atom additive method

ATS_MB_0_pol Autocorrelation descriptor (Moreau-Bruto) of order 0 weighted by atomic polarizabilities

EstateShydunsat Sum of E-state hydrophobic unsaturated atoms

EstateSHdCH2 Sum of hydrogen E-state for =CH2 type

FraVSAhydsat Fraction of 2D van der Waals hydrophobic saturated surface area

ANN model

(Model 2)

AlogP98 Calculated logP by Ghose’s atom additive method

ATS_MB_2_pol Autocorrelation descriptor(Moreau-Bruto) of order 2 weighted by atomic polarizabilities

EstateShba Sum of E-state for Hydrogen bond acceptor

EstateSHdsCH Sum of hydrogen E-state for =CH- type

VChi4c Kier & Hall valence connectivity index of order 4(cluster)

RP(reactive)

-MLR 

others MOA set

(Model 3-1)

AlogP98 Calculated logP by Ghose’s atom additive method

ATS_MB_2_AlogP98 Autocorrelation descriptor(Moreau-Bruto) of order 2 weighted by AlogP98 values

ATS_MB_6_AlogP98 Autocorrelation descriptor(Moreau-Bruto) of order 6 weighted by AlogP98 values

ATS_MB_6_Estate Autocorrelation descriptor(Moreau-Bruto) of order 6 weighted by E-State values

EstateSHdCH2 Sum of hydrogen E-state for CH2 type

RP(reactive)

-MLR

reactive MOA set

(Model 3-2)

ATS_MB_0_pol Autocorrelation descriptor(Moreau-Bruto) of order 0 weighted by atomic polarizabilities

EstateShyd Sum of E-state for hydrophobic atoms

EstateSaaCH Sum of E-state for aaCH type (a: aromatic bond)

FraVSAhydunsat Fraction of 2D van der Waals hydrophobic unsaturated surface area

FraRotBonds Fraction of Rotatable bond 

RP(narcosis)

-MLR 

narcosis MOA set

(Model 4-1)

AlogP98 Calculated logP by Ghose’s atom additive method

ATS_MB_0_pol Autocorrelation descriptor(Moreau-Bruto) of order 0 weighted by atomic polarizabilities

ATS_MB_6_AlogP98 Autocorrelation descriptor(Moreau-Bruto) of order 6 weighted by AlogP98 values

Estate_SHdCH2 Sum of hydrogen E-state for =CH2 type

FraVSAhyd Fraction of 2D van der Waals hydrophobic surface area

RP(narcosis)

-MLR 

Others MOA set

(Model 4-2)

AlogP98 Calculated logP by Ghose’s atom additive method

ATS_MB_10_pol Autocorrelation descriptor(Moreau-Bruto) order 10 weighted by AlogP98 values

Estate_SHhyd Sum of hydrogen E-state for hydrophobic atoms

Estate_SHpolar Sum of hydrogen E-state for polar atoms

FraVSAhydsat Fraction of 2D van der Waals hydrophobic saturated surface area
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this model are summarized in Table 4. The calculated logLC50

of the training and test set were plotted against the experi-

mental values, as shown in Figure 2 for model 1. 

Model 1. 

logLC50 = −0.77469679 × AlogP98 − 0.0247932

× ATS_MB_0_pol + 0.0454004 × EstateShyd_unsat

− 0.7148743 × EstateSHdCH2 + 1.45112205 

× FraVSAhydsat + 0.07012133

(Training set) n = 445, R2 = 0.712, MAE = 0.557 

 (Test set) n = 110, R2 = 0.553, MAE = 0.523 

Where n is numbers of chemicals in the data set, R2 is the

coefficient of determination, and MAE is mean absolute

error. The model 1 contains five molecular descriptors.

Upon comparison of the residuals for chemicals of each

MOA, the model 1 tended to overestimate value for most of

the reactive group compounds. About 26.3% of reactive

group compounds on the training and test set had larger

residual than 1.0 logLC50 (see Figure 2). Moreover, mean

absolute error of reactive group compound on the training

and test set (MAE=0.74 and 0.80) is larger than that of the

others group compound (MAE=0.52 and 0.47) . The results

revealed that the reactive chemicals were responsible for

increase in error in the MLR model. Subsequently, the result

led us to develop local RP-MLR models for reactive group

chemicals.

ANN Results. In our study, ANN architecture consists of

three layers: input layer, hidden layer and output layer. As

Rprop neural network do not need to choose learning rate

and momentum parameter, the optimization of ANN model

only depend on the number of hidden neurons. The number

of hidden neurons from 4 to 31 in the ANN models had been

tried. The optimum ANN model was achieved for the

training set, validation set, and test set with high correlation

coefficient (R2). Based on statistical results, 5 descriptors

and 14 hidden neurons were required as the best protocol.

The correlation coefficients (R2) of the training, validation,

and test set in the best ANN model were 0.802, 0.625, and

0.618, respectively. The predicted logLC50 of the best ANN

are shown in Figure 3. The five descriptors used for the best

ANN model are shown in Table 4. The results of ANN

model represented a similar tendency as that of MLR model.

About 19.8% of reactive group compounds on the training

and test set had larger residual than 1.0 (logLC50). The mean

absolute error (MAE) of reactive group compound on the

training and test set (MAE=0.640 and 0.721) was larger than

that of the others group compound (MAE=0.469 and 0.434).

The reactive group compounds had overestimated toxicity

values in the ANN model (see Figure 3). 

RP-MLR Results. The prediction of MLR and ANN

model represented a similar tendency for reactive MOA. The

MLR and ANN model overestimated the results of most of

the reactive MOA compounds and provided a good predic-

tion for the narcosis MOA chemicals. The solution in the

overestimated prediction of reactive MOA chemicals would

be to develop a local based QSAR model for reactive MOA.

In this study, we have tried to classify all the chemicals

according to two patterns (reactive MOA vs. the others

MOAs, and narcosis MOA vs. the others MOAs) using

recursive partitioning (RP) method and then, build local

MLR models within the same MOA. A detailed description

of descriptors in the models is summarized in Table 4. 

The RP(reactive)-MLR. In order to investigate the

performance of local QSAR model, the training and the test

set were classified into two subsets (reactive and the others

MOA chemicals), respectively. The RP tree for classification

of reactive and the others MOA are represented in Figure

4(a). The structure of the tree consists of four terminal and

three non-terminal nodes, and the value of terminal node

Figure 2. A plot of experimental vs predicted logLC50 values by
MLR model.

Figure 3. A plot of experimental vs predicted logLC50 values by
ANN model.
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means class number by RP method (1 means reactive MOA

and 0 means the others MOA). The descriptors, E-

state_SHdsCH(Sum of hydrogen E-state values for =CH-

type), E-state_SsBr(Sum of E-state values for -Br type),

VChi_01(Kier & Hall valence connectivity index of order 1)

were employed for the construction of final tree. The main

structural information reflected by these descriptors was

related to bond-polarity and molecular topology. The de-

scriptors, E-state_SHdsCH and E-state_SsBr characterizes

the bond polarity of C-H, A-Br, that is the reaction ability of

=CH- and Any atom-Br. VChi_01 describes molecular con-

nectivity and shape. In the tree, true response in agreement

with the condition on tree stem follows the branch towards

the downside and false response follows the branch to the

upper side. The prediction accuracy of the RP(reactive

MOA) model was 79.33%. The MLR (RP(reactive MOA)-

MLR) model using 119 chemicals classified as reactive

MOA is the following five-descriptors model (Model 3-1).

And the MLR (RP(the others MOA)-MLR) model using 326

chemicals classified as the others MOA is presented as the

following equation (Model 3-2). 

Model 3-1.

logLC50 = −0.1054478 × ATS_MB_0_pol − 0.0431803 

× EstateShydrophobic + 0.10296219 × EstateSaaCH 

− 3.208933 × FraVSAhydunsat + 6.1780578 

× FraRotBonds + 2.23251849

(Training set) n = 119, R2 = 0.755, MAE = 0.623

(Test set) n = 32, R2 = 0.552, MAE = 0.610

Model 3-2.

logLC50 = −0.7086855 × AlogP98 − 0.3109225 

× ATS_MB_2_AlogP98 + 0.14222876 

× ATS_MB_6_AlogP98 − 0.0024411 

× ATS_MB_6_Estate − 1.0087035 × EstateSHdCH2 

+ 0.99742408

(Training set) n = 326, R2 = 0.741, MAE = 0.510 

(Test set) n = 78, R2 = 0.686, MAE = 0.431 

The absence of AlogP98 in the Model 3-1 illustrates

absence of influence of hydrophobicity because the reac-

tivity of compounds is more related to reactivity of func-

tional groups than the hydrophobicity of whole molecule.

Figure 5(a) describes the plot of the experimental versus

predicted logLC50 values of RP (reactive)-MLR model for

the training and test set. There were some improvements

when compared to model 1, where the R2 values for training

set and test set were 0.712 and 0.553, respectively. There-

fore, it can be seen that local model 3-1 and 3-2 gives better

Figure 4. Recursive partitioning tree for MOA classification, (a) The trees for the RP(Reactive)-MLR model, (b) The trees for
RP(Narcosis)-MLR model. 
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results than global MLR model 1 (see Table 3). As the

performance of Model 3-1 is worse than that of Model 3-2

for test set, it is apparent that informative descriptors are

needed for representing reactive MOA. Further study is

necessary to investigate good descriptors for applying

QSAR model to the reactive MOA chemicals. 

The RP(narcosis)-MLR. We have applied RP method to

classify the data which were labeled as narcosis and others

MOA and constructed local QSAR model for the obtained

groups of chemical. The RP tree for classification of

narcosis and the others MOA are shown in Figure 4(b). The

structure of the tree consists of five terminal and four non-

terminal nodes and the value of terminal node signifies class

number by RP method (1 means narcosis MOA and 0 means

the others MOA). The descriptors, E-state_S_positive_

charged_group (Sum of E-state values for positive charged

group), ATS_Moreau_Bruto_04_mass (Autocorrelation

descriptor (Moreau-Bruto) order 4 weighted by atomic

masses), E_state_SHdsCH (Sum of hydrogen E-state values

for =CH- type) and E_state_SdO (Sum of hydrogen E-state

values for =O type) were employed for the construction of

the final tree. The descriptors in the RP model were all

related to functional groups (for example positive charged,

hydrogen of -CH=, carbonyl and nitro group) and size

(atomic mass of molecules). The prediction accuracy of the

RP (narcosis MOA) model was 74.16%. Local QSAR

models were built by multiple linear regressions for each

MOA chemicals classified as narcosis and the others MOA

(Model 4-1 and 4-2). 

Model 4-1. 

logLC50 = −0.8266561 × AlogP98 − 0.0288907 

× ATS_MB_0_pol + 0.32083556 

× ATS_MB_6_AlogP98 − 0.6461915 

× Estate_SHdCH2 + 1.35188388 × FraVSAhydrophobic 

+ 0.41972596

 (Training set) n = 260, R2 = 0.758, MAE = 0.445

(Test set) n = 85, R2 = 0.534, MAE = 0.476

Model 4-2.

logLC50 = −0.7583831 × AlogP98 − 0.0565768 

× ATS_MB_10_pol + 0.11159603 × EstateSHhydrophobic

− 0.1228881 × EstateSHpolar − 1.88773629 

× FraVSAhydsat − 1.3515789

 
(Training set) n = 185, R2 = 0.704, MAE = 0.609

(Test set) n = 25, R2 = 0.730, MAE = 0.493

The predictions for the RP(narcosis)-MLR model are

shown in Figure 5(b). The RP(narcosis)-MLR model and

RP(reactive)-MLR model represented similar performance

for the training and test set and outperform the MLR model

(Table 3). The results confirmed the advantage of local

model over the global model. Figure 5. Plots of experimental vs predicted logLC50 values by RP-
MLR models after (a) classification of reactive MOA and the
others MOA (b) classification of narcosis MOA and the others
MOA. Table 5. Comparative statistical performance of consensus QSAR

models 

Model

No.
Model No.

Training set 

(N=445)

Test set 

(N=100)

R2 a MAEb R2 a MAEb

5 1,2 0.778 0.485 0.630 0.471

6 (3-1,3-2), (4-1,4-2) 0.780 0.485 0.649 0.455

7 2,(3-1,3-2) 0.795 0.472 0.666 0.445

8 2,(4-1,4-2) 0.794 0.467 0.639 0.459

9 1,2,(3-1,3-2) 0.788 0.473 0.655 0.457

10 1,2,(4-1,4-2) 0.785 0.472 0.634 0.465

11 2,(3-1,3-2), (4-1,4-2) 0.800 0.460 0.663 0.446

12 1,2,(3-1,3-2), (4-1,4-2) 0.791 0.465 0.653 0.453

aR2: coefficient of determination. bMAE: mean absolute error.
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Consensus Approach. To improve the predictions of

acute toxicity of the test set, all the four models obtained in

this study were used for consensus approach. Consensus

prediction for the toxicity of a compound was calculated by

averaging the predicted toxicity from four individual models.

Table 5 compares the performances of the consensus

models. It is clear from Table 4 and 5 that all the consensus

models were shown to outperform individual models. In

addition, it was proved that the Model 11 was the most

predictive model for predicting toxicity among all the con-

sensus models, resulting in improvements of R2 and MAE

for the test set. Figure 6 shows the plot of predicted versus

experimental logLC50 values by consensus Model 11. By

comparison of the results of reactive MOA chemicals,

Model 11 was found to have the MAE of 0.581 for reactive

MOA chemicals on the training set, and 0.708 for those on

the test set. It can be seen that the MAE of consensus Model

11 for reactive MOA chemicals were lower than that of

MLR and ANN model. The result indicates that performance

of Model 11 was obtained by improvement of consensus

prediction for reactive MOA chemicals. 

According to regulation class of Table 2, the model 11 also

correctly classified 83.6% for the training set and 88.2% for

the test set. This result demonstrates that Model 11 would

aid in prioritizing the chemicals for acute toxicity testing and

in categorizing the chemicals for regulation of the use. 

Conclusion

In this study, we developed four QSAR models using

MLR, ANN and two RP-MLR methods and evaluated a

consensus models from individual models. As QSAR models

only used 2-dimensional descriptors by easily drawing 2D

chemical structures, they can allow model users to treat a

large set of chemicals for priority setting. The best model

was consensus model from ANN, two RP-MLR models and

showed correlation coefficients (R2) as 0.80 and 0.66 on

training set (445 compounds), and test set (110 compounds),

respectively and was better than previous studies. In best

model, some of the reactive MOA chemicals had larger error

than the others MOA chemicals. Therefore, it is necessary to

develop new molecular descriptors for reactive MOA

chemicals. In further studies, we will attempt to build new

models by considering characteristics of reactivity of

toxicity. 
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