• Title/Summary/Keyword: prediction error methods

Search Result 525, Processing Time 0.029 seconds

Adaptive Linear Predictive Coding of Time-varying Images Using Multidimensional Recursive Least-squares Ladder Filters

  • Nam Man K.;Kim Woo Y.
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • This paper presents several adaptive linear predictive coding techniques based upon extension of recursive ladder filters. A 2-D recursive ladder filter is extended to a 3-D case which can adaptively track the variation of both spatial and temporal changes of moving images. Using the 2-D/3-D ladder filter and a previous farme predictor, two types of adaptive predictor-control schemes are proposed in which the prediction error at each pel can be obtained at or close to a minimum level. We also investigate several modifications of the basic encoding methods. Performance of the 2-D/3-D ladder filters, their adaptive control schemes, and variations in coding methods are evaluated by computer simulations on a real sequence and compared to the results of motion compensation and frame differential coders. As a validity test of the ladder filters developed, the error signals for the different predictors are compared and evaluated.

  • PDF

Evaluating Spectral Preprocessing Methods for Visible and Near Infrared Reflectance Spectroscopy to Predict Soil Carbon and Nitrogen in Mountainous Areas (산지토양의 탄소와 질소 예측을 위한 가시 근적외선 분광반사특성 분석의 전처리 방법 비교)

  • Jeong, Gwanyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.509-523
    • /
    • 2016
  • The soil prediction can provide quantitative soil information for sustainable mountainous ecosystem management. Visible near infrared spectroscopy, one of soil prediction methods, has been applied to predict several soil properties with effective costs, rapid and nondesctructive analysis, and satisfactory accuracy. Spectral preprocessing is a essential procedure to correct noisy spectra for visible near infrared spectroscopy. However, there are no attempts to evaluate various spectral preprocessing methods. We tested 5 different pretreatments, namely continuum removal, Savitzky-Golay filter, discrete wavelet transform, 1st derivative, and 2nd derivative to predict soil carbon(C) and nitrogen(N). Partial least squares regression was used for the prediction method. The total of 153 soil samples was split into 122 samples for calibration and 31 samples for validation. In the all range, absorption was increased with increasing C contents. Specifically, the visible region (650nm and 700nm) showed high values of the correlation coefficient with soil C and N contents. For spectral preprocessing methods, continuum removal had the highest prediction accuracy(Root Mean Square Error) for C(9.53mg/g) and N(0.79mg/g). Therefore, continuum removal was selected as the best preprocessing method. Additionally, there were no distinct differences between Savitzky-Golay filter and discrete wavelet transform for visual assessment and the methods showed similar validation results. According to the results, we also recommended Savitzky-Golay filter that is a simple pre-treatment with continuum removal.

  • PDF

Estimation of Spatial Coherency Functions for Kriging of Spatial Data (공간데이터 크리깅 적용을 위한 공간상관함수 추정)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.91-98
    • /
    • 2016
  • In order to apply Kriging methods for geostatistics of spatial data, an estimation of spatial coherency functions is required priorly based on the spatial distance between measurement points. In the study, the typical coherency functions, such as semi-variogram, homeogram, and covariance function, were estimated using the national geoid model. The test area consisting of 2°×2° and the Unified Control Points (UCPs) within the area were chosen as sampling measurements of the geoid. Based on the distance between the control points, a total of 100 sampling points were grouped into distinct pairs and assigned into a bin. Empirical values, which were calculated with each of the spatial coherency functions, resulted out as a wave model of a semi-variogram for the best quality of fit. Both of homeogram and covariance functions were better fitted into the exponential model. In the future, the methods of various Kriging and the functions of estimated spatial coherency need to be studied to verify the prediction accuracy and to calculate the Mean Squared Prediction Error (MSPE).

Dental age estimation using the pulp-to-tooth ratio in canines by neural networks

  • Farhadian, Maryam;Salemi, Fatemeh;Saati, Samira;Nafisi, Nika
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • Purpose: It has been proposed that using new prediction methods, such as neural networks based on dental data, could improve age estimation. This study aimed to assess the possibility of exploiting neural networks for estimating age by means of the pulp-to-tooth ratio in canines as a non-destructive, non-expensive, and accurate method. In addition, the predictive performance of neural networks was compared with that of a linear regression model. Materials and Methods: Three hundred subjects whose age ranged from 14 to 60 years and were well distributed among various age groups were included in the study. Two statistical software programs, SPSS 21 (IBM Corp., Armonk, NY, USA) and R, were used for statistical analyses. Results: The results indicated that the neural network model generally performed better than the regression model for estimation of age with pulp-to-tooth ratio data. The prediction errors of the developed neural network model were acceptable, with a root mean square error (RMSE) of 4.40 years and a mean absolute error (MAE) of 4.12 years for the unseen dataset. The prediction errors of the regression model were higher than those of the neural network, with an RMSE of 10.26 years and a MAE of 8.17 years for the test dataset. Conclusion: The neural network method showed relatively acceptable performance, with an MAE of 4.12 years. The application of neural networks creates new opportunities to obtain more accurate estimations of age in forensic research.

Prediction Performance of Ocean Temperature and Salinity in Global Seasonal Forecast System Version 5 (GloSea5) on ARGO Float Data

  • Jieun Wie;Jae-Young Byon;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.327-337
    • /
    • 2024
  • The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.

A Multivariate Calibration Procedure When the Standard Measurement is Also Subject to Error (표준 측정치의 오차를 고려한 다변량 계기 교정 절차)

  • Lee, Seung-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 1993
  • Statistical calibration is a useful technique for achieving compatibility between two different measurement methods, and it usually consists of two steps : (1) estimation of the relationship between the standard and nonstandard measurements, and (2) prediction of future standard measurements using the estimated relationship and observed nonstandard measurements. A predictive multivariate errors-in-variables model is presented for the multivariate calibration problem in which the standard as well as the nonstandard measurements are subject to error. For the estimation of the relationship between the two measurements, the maximum likelihood (ML) estimation method is considered. It is shown that the direct and the inverse predictors for the future unknown standard measurement are the same under ML estimation. Based upon large-sample approximations, the mean square error of the predictor is derived.

  • PDF

An assessment of machine learning models for slump flow and examining redundant features

  • Unlu, Ramazan
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.565-574
    • /
    • 2020
  • Over the years, several machine learning approaches have been proposed and utilized to create a prediction model for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, redundant features are examined to better understand both how ingredients influence on prediction models and whether possible to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can give rather accurate results using just a few attributes of a slump flow dataset.

Improvement of Long-term Creep Life Prediction Method of Gr. 91 steel for VHTR Pressure Vessel (초고온가스로 압력용기용 Gr. 91 강의 장시간 크리프 수명 예측 방법 개선)

  • Park, Jae-Young;Kim, Woo-Gon;EKAPUTRA, I.M.W.;Kim, Seon-Jin;Kim, Min-Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • Gr. 91 steel is used for the major structural components of Generation-IV reactor systems, such as a very high temperature reactor(VHTR) and sodium-cooled fast reactor(SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is important for a design application of Gr. 91 steel. In this study, a number of creep rupture data were collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: the single-C method in Larson-Miller(L-M) parameter, multi-C constant method in the L-M parameter, and a modified method("sinh" equation) in the L-M parameter. The results of the creep-life prediction were compared using the standard deviation of error value, respectively. Modified method proposed by the "sinh" equation revealed better agreement in creep life prediction than the single-C L-M method.

Prediction of Very High Critical Heat Flux for Subcooled Flow Boiling in a Vertical Round Tube (수직 원형관에서 서브쿨비등시 매우 높은 임계열유속의 예측)

  • Kwon, Young-Min;Hahn, Do-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.288-293
    • /
    • 2001
  • A critical heat flux (CHF) prediction method using an artificial neural network (ANN) was evaluated for application to the high-heat-flux (HHF) subcooled flow boiling. The developed ANN predictions were compared with the experimental database consisting of a total of 3069 CHF data points. Also, the prediction performance by the ANN was compared with those by mechanistic models and a look up table technique. The parameter ranges of the experimental data are: $0.33{\leq}D{\leq}37.5mm$, $0.002{\leq}L{\leq}4m$, $0.37{\leq}G{\leq}134Mg/m^2s$, $0.1{\leq}P{\leq}20MPa$, $50\leq{\Delta}h_{sub,in}\leq1660kJ/kg$, and $1.1{\leq}q_{CHF}\leq276MW/m^2$. $276MW/m^2$. It was found that 91.5% of the total data points were predicted within $a{\pm}20%$ error band, which showed the best prediction performance among the existing CHF prediction methods considered.

  • PDF

Glucose Prediction in the Interstitial Fluid Based on Infrared Absorption Spectroscopy Using Multi-component Analysis

  • Kim, Hye-Jeong;Noh, In-Sup;Yoon, Gil-Won
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 2009
  • Prediction of glucose concentration in the interstitial fluid (ISF) based on mid-infrared absorption spectroscopy was examined at the glucose fundamental absorption band of 1000 - 1500/cm (10 - 6.67 um) using multi-component analysis. Simulated ISF samples were prepared by including four major ISF components. Sodium lactate had absorption spectra that interfere with those of glucose. The rest NaCl, KCl and $CaCl_2$ did not have any signatures. A preliminary experiment based on Design of Experiment, an optimization method, proved that sodium lactate influenced the prediction accuracy of glucose. For the main experiment, 54 samples were prepared whose glucose and sodium lactate concentration varied independently. A partial least squares regression (PLSR) analysis was used to build calibration models. The prediction accuracy was dependent on spectrum preprocessing methods, and Mean Centering produced the best results. Depending on calibration sample sets whose sodium lactate had different concentration levels, the standard error prediction (SEP) of glucose ranged $17.19{\sim}21.02\;mg/dl$.