• Title/Summary/Keyword: prediction equation.

Search Result 1,900, Processing Time 0.031 seconds

Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams (하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.283-290
    • /
    • 2015
  • This paper proposes a method for predicting flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams. It includes an experimental test framework and associated numerical analyses. The experimental program includes flexural test results of hybrid steel fiber-reinforced ultra-high strength concrete beams with steel fiber content of 1.5% by volume. Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack mouth opening displacement relationship is considered. The comparison of moment-curvature curves of the numerical analysis results with the test results shows a reasonable agreement. Therefore, the numerical results confirms that good prediction of flexural behavior of steel fiber-reinforced ultra high strength concrete beams can be achieved by employing the proposed method.

Impacts on Water Surface Level of the Geum River with the Diversion Tunnel Operation for Low Flow Augmentation of the Boryong Dam (금강-보령댐 도수터널 운영에 따른 금강 본류 내 수위 영향 분석 연구)

  • Jang, Suk-Hwan;Oh, Kyoung-Doo;Oh, Ji-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1031-1043
    • /
    • 2017
  • Recently severe drought caused the water shortage around the western parts of Chungcheongnamdo province, South Korea. A Diversion tunnel from the Geum river to the Boryong dam, which is the water supply dam for these areas has been proposed to solve this problem. This study examined hydraulic impacts on the Geum river associated with the diversion plan assuming the severe drought condition of 2015 would persist for the simulation period of 2016. The hydraulic simulation model was verified using hydrologic and hydraulic data including hourly discharges of the Geum river and its 8 tributaries, fluctuation of tidal level at the mouth of the river, withdrawals and return flows and operation records of the Geum river barrage since Feb. 1, 2015 through May 31, 2015. For the upstream boundary condition of the Geum river predicted inflow series using the nonlinear regression equation for 2015 discharge data was used. In order to estimate the effects of uncertainty in inflow prediction to the results total four inflow series consisting of upper limit flow, expected flow, lower limit flow and instream flow were used to examine hydraulic impacts of the diversion plan. The simulation showed that in cases of upper limit and expected flows there would be no problem in taking water from the Geum river mouth with a minimum water surface level of EL(+) 1.44 m. Meanwhile, the simulation also showed that in cases of lower limit flow and instream flow there would be some problems not only in taking water for water supply from the mouth of the Geum river but also operating the diversion facility itself with minimum water surface levels of EL(+) 0.94, 0.72, 0.43, and 0.14 m for the lower limit flow without/with diversion and the instream flow without/with diversion, respectively.

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • SUN, Dong-Liang;QU, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method. VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF

Experimental Study on Peak-Pressure Variation Due to Compression by Using RCM (급속 압축장치(RCM)의 압축 조건에 따른 최대 압력 변화에 관한 실험적 연구)

  • Kim, Hye-Min;Kim, Hak-Young;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.197-204
    • /
    • 2011
  • RCM is used to clarify the complex phenomena of engine combustion. In order to describe engine combustion, several significant experimental studies are considered. Prediction of the peak pressure is very important since it has a significant influence on engine combustion. In addition, peak-temperature variation can be calculated from the measured peak pressure by using the fundamental thermodynamic relation. When the RCM is in operation, heat transfer occurs through the cylinder wall. Because of this phenomenon, it is difficult to determine the peak pressure without employing the case by case experimental method. The goal of this study is to evaluate the peak pressure analytically. We conduct an experiment to confirm the relationship between the peak pressure and some parameters. Using the results of the peak pressure variation experiment, we develop a general equation that be used to calculate the peak pressure as a function of operation time and compression ratio.

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • Sun, Dong-Liang;Qu, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL (Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method -VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF

Validation of Energy and Water Fluxes Using Korea Land Data Assimilation and Flux Tower Measurement: Haenam KoFlux Site's Hydro-Environment Analysis (Flux Tower 관측자료와 KLDAS를 이용한 Soil-Vegetation-Atmosphere Transfer 모형의 적용:해남 KoFlux 지점의 수문순환 환경분석에 대하여)

  • Kim, Daeun;Lim, Yoon Jin;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.285-291
    • /
    • 2011
  • Accurate assessment of the water and energy cycles is essential to understand hydrologic, climatologic, and ecological processes. Common Land Model (CLM) is one of the well-developed Soil-Vegetation-Atmosphere Transfer (SVAT) models based on the water and energy balance equation for accurate prediction of hydro-environmental cycles. The CLM can estimate realistic and reliable results using relatively simple parameters. It has been widely used in the world, however in Korea practical applications of the CLM are rare due to lack of information and input data. In this study, the CLM with Korea Flux network (KoFlux) and Kore Land Data Assimilation System (KLDAS) data were individually validated for domestic applications. This study showed that all comparisons between observations and model results from KoFlux and KLDAS had reasonable correlation with determination coefficient of 0.73~1.00 via regression. The results confirmed the applicability of the CLM and the possibility of the KLDAS usage for the region where input data are not existed.

An Evaluation on Bending Behaviors of Conical Composite Tubes for Bicycle Frames (자전거 프레임용 원추형 복합재 튜브의 굽힘 거동 분석)

  • Hwang, Sang-Kyun;Lee, Jung-Woo;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.358-362
    • /
    • 2016
  • Mechanical properties of static and dynamic behavior became important since the use of conical composite tubes in large structures such as aerospace, planes, and submarines as well as leisure goods such as bicycle frames, fishing rods, and golf shafts. In the past, the mechanical property prediction model for static behavior was studied using vibration, bending, and buckling. But there is a need to study how fiber orientation error affects mechanical properties of conical composite structure because the model assumes constant fiber orientation angle. The purpose of this study is to derive an equation that can predict the static behavior of conical composite tube for bicycle frames by considering fiber orientation error with respect to various design parameters.

Flow Rate Prediction of Pneumatic Pipe System Using Concept of Conductance (컨덕턴스의 개념을 사용한 공압관 시스템의 유량 예측)

  • Kim, Jin-Hyeon;Deng, Ruoyu;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.431-436
    • /
    • 2014
  • Conductance is a concept contrary to flow resistance and is extensively used as a flow index on how easily fluid is transported through a pneumatic pipe or fluid device. However, research on flow conductance is very rare to date, and a systematic investigation is needed for the standardization of pneumatic devices. In the present study, a computational fluid dynamics method was applied to solve the compressible Navier-Stokes equations with two-equation turbulence models. The present CFD results were validated with existing experimental data. The conductance values and friction factors at the inlet and outlet of a pneumatic pipe were used to assess the flow rates. The present results showed that the conductance depends on the pressure ratio at the inlet and outlet of a pipe.

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF

Analysis of Spray Combustion for the Performance Prediction of Liquid Rocket Combustor (3차원 분무연소장 해석에 의한 액체추진기관 연소실 성능예측에 대한 연구)

  • 황용석;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.31-39
    • /
    • 1999
  • In this paper, numerical experiment is attempted to analyze and compare the combustion efficiency of the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Preconditioned Wavier-Stokes equation system with low Reynolds number $\kappa$-$\varepsilon$ model for turbulence closure, is LU-SGS time-integrated. Spray processes are modeled by DSF analysis with experimentally determined injection characteristics. n-heptane/air global reaction model approximates the combustion for simplicity, and the influence of turbulence on the chemical reaction is included using eddy dissipation model. The results showed the FOF triplet injector of highest combustion efficiency, whereas the OFO type of poet performance. It was also observed that the droplet mean diameter and the average gas temperature due to the mixing efficiency, are the representative parameters for the performance design of combustion.

  • PDF