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NOMENCLATURE 

a coefficient in the discretized 
equation 

A surface area 
b constant term in the discretized 

equation 
d coefficient in the velocity-correction 

equation 
E time step multiple 
g gravitational acceleration 
N1, N2 inner doubly-iterative times 
p pressure 
qm reference mass flow rate 
Ra Rayleigh number 
Re Reynolds number 
RsMass relative maximum mass residual 
RsUMom, RsVMom, RsWMom relative maximum u, v, w-component 

momentum residuals 
S source term 
T temperature 
u, v, w velocity component in x, y, z 

directions
,  ,  u v w  pseudo-velocity 

x, y, z coordinates 
 under-relaxation factor 
 expansion coefficient 
  dynamic viscosity 
 kinematic viscosity  
 density 

Subscripts
e, w, n, s, b, t cell surface 
in inlet 
P, E, N, S, W, B, T grid point 
m mean 
nb neighboring grid points 
u, v, w referring to u, v, w momentum 

equations 

Superscripts
PTemp temporary value in previous inner 

iteration step 
Temp temporary value in current inner 

iteration step 
0 initial value 
* intermediate value 

1. INTRODUCTION 

The numerical approaches for solving the Navier-Stokes 
equations may be broadly divided into two categories[1,2]: 
density-based and pressure-based. The density-based approach 
works well for cases of high Mach number, but for low Mach 
number flow and heat transfer problems it becomes unstable 
and its convergence rate is greatly deteriorated. The 
pressure-based approach, or the primitive-variable approach, 
though originally was developed for solving incompressible 
fluid flows, has been successfully extended to compressible 
flows, and widely adopted in computational fluid dynamics 
and numerical heat transfer. Among the pressure-based 
approaches, the pressure-correction method is the most 
widely-used one because of its simplicity and straightforward 
in physical concept.  

The first pressure-correction method is the SIMPLE 
algorithm, proposed by Patankar and Spalding in 1972[3]. The 
major approximations made in the SIMPLE algorithm are: (1) 
the initial pressure field and the initial velocity field are 
assumed independently, hence the interconnection between 
pressure and velocity is neglected, leading to some 
inconsistency between them; and (2) the effects of the velocity 
corrections of the neighboring grids are arbitrarily dropped in 
order to simplify the solution procedure, thus making the 
algorithm semi-implicit. These two approximations will not 
affect the final solutions if the solution process converges[4]. 
However, they do affect the convergence rate and stability. 
Therefore, since the proposal of the SIMPLE algorithm, a 
number of variants have been proposed in order to overcome 
one or both of the approximations. In 1981, Patankar proposed 
the SIMPLER algorithm[5], which is the method for 
overcoming the first approximation in the SIMPLE algorithm. 
In the SIMPLER algorithm for overcoming the inconsistency 
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between the initial pressure field and the initial velocity field, 
the initial pressure is determined by a pressure equation. In the 
CSIMPLER[6] and CLEAR[7,8] algorithms, the same method 
is adopted to overcome the first approximation in the SIMPLE. 
In 1984, Van Doormaal and Raithby proposed the SIMPLEC 
algorithm[9], in which by changing the definition of the 
coefficients of the pressure-correction equation, the effects of 
dropping the neighboring grid velocity corrections (the second 
approximation in the SIMPLE algorithm) are partially 
compensated. Van Doormaal and Raithby also proposed the 
SIMPLEX algorithm[10,11] in 1985. In the SIMPLEX 
algorithm, by solving a set of algebraic equations for the 
coefficient d in the velocity-correction equation, the effects of 
dropping the velocity corrections of the neighboring grids are 
also taken into account to some degree. However, an 
additional assumption is introduced: the corrections of 
pressure difference across every interface of the main control 
volume are the same. PISO algorithm[12] was proposed by 
Issa in 1985, which implements two correction steps of 
pressure correction. This makes some improvement in the 
completeness of pressure correction equation of the current 
iteration level than that obtained by the single correction step. 
In the FIMOSE algorithm proposed in [13] at one iteration 
level the momentum and pressure equations are iteratively 
solved to reduce the effects of the second approximation in the 
SIMPLE algorithm. Yen and Liu[14] proposed the explicit 
correction step method to accelerate the convergence by 
making the velocity explicitly satisfy the momentum equation. 
In summary, more than ten variants of SIMPLE algorithm are 
available in the literature, but no one has completely overcome 
the two assumptions in the SIMPLE algorithm except the 
CLEAR algorithm. In the CLEAR algorithm, the update of 
pressure and velocity is not conducted by adding a small value 
of correction, rather, the pressure field is re-solved based on 
the intermediate velocity, thus the effects of the neighboring 
grid points can be taken into account, making the algorithm 
fully implicit. However, the robustness of the CLEAR 
algorithm is somewhat deteriorated as indicated in [15] where 
a modified algorithm, named by CLEARER was proposed. 
However, by re-introduction of the correction terms into the 
algorithm, the fully-implicit character has been destroyed in 
the CLEARER algorithm. In order to retain the fully-implicit 
feature while further enhance the robustness and convergence 
characteristics, on the basis of CLEAR algorithm[7,8] the 
IDEAL algorithm (Inner Doubly-Iterative Efficient Algorithm 
for Linked-Equations)[16,17] was proposed by the present 

authors. In the algorithm there exist inner doubly-iterative 
processes for pressure equation at each iteration level, which 
almost completely overcome the two approximations in 
SIMPLE algorithm. Thus the coupling between velocity and 
pressure is fully guaranteed, greatly enhancing the 
convergence rate and stability of solution process. 

With the development of different coupling algorithms 
between pressure and velocity, the comparisons between 
different algorithms have also been extensively conducted. 
These include: the comparison between FIMOSE, SIMPLER 
and SIMPLEC algorithms by Latimer and Pollard[13]; the 
comparison of the PISO, SIMPLER and SIMPLEC algorithms 
by Jang et al.[18]; the comparison of the PISO and SIMPLE 
algorithms for steady turbulent flow problems by Wanik and 
Schnell[19]; the comparison of the SMAC, PISO and ITA 
schemes for unsteady flows by Kim and Benson[20]; the 
comparison of SIMPLE with PISO for transient flows by 
Barton[21]; the comparison study of the convergence 
characteristics and robustness for SIMPLE, SIMPLER, 
SIMPLEC and SIMPLEX algorithms at fine grids by Zeng 
and Tao[22], etc. From the above comparisons, it can be 
concluded that, globally speaking, the SIMPLER, SIMPLEC 
and PISO algorithms are relatively better. In [8,17] 
comparisons were also conducted between SIMPLER, 
CLEAR and IDEAL algorithms for incompressible fluid flow 
and heat transfer problems. 

Numerical simulation of complex fluid flow and heat 
transfer problems has become an effective tool in scientific 
research and engineering design and its application range has 
been widely extended in recent years. One important extension 
is from two-dimensional flow to three-dimensional case. All 
of the algorithm comparisons mentioned above are conducted 
only for two-dimensional fluid flow and heat transfer 
problems. There is very little information concerning the 
performance comparisons of different algorithms for 
three-dimensional fluid flow and heat transfer problems in the 
literature. The extension of the dimensionality in the 
simulation of fluid flow problems not only cause to a 
significant increase in computational effort, but also may 
drastically change the numerical characteristics of algorithms. 
It is the authors’ experience that almost all of the above 
mentioned algorithms make no appreciable difference when 
three dimensional problems are solved. Thus it is a very 
challenging task and an urgent need to develop an efficient 
and robust algorithm for solving three-dimensional fluid flow 
and heat transfer problems. The major purpose of the present 

The solution process of the IDEAL algorithm

Solving the  
momentum equations

The first inner iteration process  
for pressure equation

The second inner iteration process 
for pressure equation 

The first inner iteration 

The second inner iteration step

Repeat the iteration until the iteration 
times are equal to N1 

Previous iteration level Current iteration Next iteration level …… ……

Repeat the iteration until the iteration 
times are equal to N2

The first inner iteration 

The second inner iteration step

Fig. 1 The framework of the solution process of the IDEAL algorithm. 
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paper is to adopt the IDEAL algorithm for three-dimensional 
incompressible fluid flow and heat transfer problems and 
make a systemic comparison between IDEAL and the 
algorithms of SIMPLER, SIMPLEC and PISO which are 
probably the three most widely-used algorithms in literature. 

In the following the major solution procedure of IDEAL 
algorithm is first briefly reviewed. Then the comparison 
conditions and the convergence criterion are described, 
followed by a systemic comparison of the robustness and 
convergence rate among the four algorithms for five 3D 
application examples. Finally, some conclusions are drawn. 

2. BRIEF REVIEW OF THE IDEAL ALGORITHM 

In [16] the IDEAL algorithm has been proposed for 
incompressible fluid flow and heat transfer problems, and in 
[17] comparisons have been made for 2D cases. In the present 
paper the algorithm is conducted on a staggered system in 
three-dimensional Cartesian coordinates. For the convenience 
of further presentation the major points of the IDEAL 
algorithm are reviewed here.  

Fig. 1 shows the framework of the solution process of the 
IDEAL algorithm in detail. The pressure-based solution 
method is iterative in nature. In the following we will often 
use the term “iteration level”. By one iteration level we mean 
that all the computations are completed at the same values of 
the coefficients of the discretized momentum equations. In the 
IDEAL algorithm at each iteration level there exist two inner 
iteration processes, or inner doubly-iterative processes, for 
pressure field solution. The first inner iteration process for 
pressure equation almost completely overcomes the first 
approximation in the SIMPLE algorithm. The second inner 
iteration process almost completely overcomes the second 
approximation in the SIMPLE algorithm. The solution 
procedure of the IDEAL algorithm is presented as follows. 

Step-1: Assume an initial velocity field 0u , 0v  and 0w .
Step-2: Calculate the coefficients a and source terms b of 
the discretized momentum Equations (1), (2) and (3), by the 
initial velocity field. The expressions of the coefficients a
and source terms b depend on the discretized schemes, and 
have been well documented in literatures[4,23-24]. For the 
simplicity of presentation, they are not shown here. 

--- The first inner iteration process for pressure question --- 

Step-3: Calculate the pseudo-velocities 0u , 0v  and 0w
defined in Equations (1), (2) and (3). 

0
0( ) ( )

/
nb nbTemp Temp Temp Temp Temp

e e P E e e P E
e u

a u b
u d p p u d p p

a
 (1) 

0
0( ) ( )

/
nb nbTemp Temp Temp Temp Temp

n n P N n n P N
n v

a v b
v d p p v d p p

a
 (2) 

0
0( ) ( )

/
nb nbTemp Temp Temp Temp Temp

t t P T t t P T
t w

a w b
w d p p w d p p

a
 (3) 

where, e u
e

e

Ad
a , n v

n
n

Ad
a , t w

t
t

Ad
a .

Step-4: Solve the pressure Equation (4), and obtain the 
temporary pressure 

Tempp

( ) ,  ( ) , ( )
( ) ,   ( ) ,  ( )                   

Temp TempP
P nb nb

p

P E W N S T B

E e W w N n

S s T t B b

a p a p b

a a a a a a a
a Ad a Ad a Ad
a Ad a Ad a Ad

 (4) 

0 0 0

0 0 0

( ) ( ) ( )

( ) ( ) ( ) (1 )

w e s

PTempP
n b t p P

p

b u A u A v A
av A w A w A p

Equation (4) is obtained by substituting Equations (1), (2) 
and (3) into the discretized continuity equation: 

( ) ( ) ( ) ( ) ( ) ( ) 0e e w w n n s s t t b bu A u A v A v A w A v A
 (5) 

In the first inner iteration process for pressure equation, the 
pressure under-relaxation factor p  is incorporated into 
the pressure Equation (4). The under-relaxation factor is 
used to make the solution process more stable for some 
very complicated cases. Generally speaking, the solution 
process of the IDEAL algorithm is stable enough, so for 
most cases the pressure in Equation (4) needn’t be 
under-relaxed and the pressure under-relaxation factor p

is set as 1. 
Step-5: Calculate the temporary velocities Tempu ,

Tempv and Tempw  from Equations (1), (2) and (3) by the 
temporary pressure Tempp . Then one inner iteration step is 
finished and the next inner iteration step will be started. 
Step-6: Regard Tempu , Tempv , Tempw  and Tempp  calculated in 
Step-4 and Step-5 as the temporary velocity and pressure of the 
previous inner iteration step, denoted by PTempu , PTempv ,

PTempw and PTempp . Return to Step-3, and then all the 
superscripts 0 in steps 3 and 4 are replaced by PTemp, and the 
values of 0u , 0v  and 0w are updated. Then pressure Equation 
(4) is re-solved. Repeat such iteration process composed of 
steps 3, 4 and 5 until the iteration times are equal to the 
pre-specified times N1. After the first inner iteration process 
for pressure equation is finished, the final temporary pressure 

Tempp  is regarded as the initial pressure *p .

------------------------------------------------------------------------ 

Step-7: Solve the momentum Equations (6), (7) and (8), by 
the initial velocity and pressure *p , and obtain the 
intermediate velocities *u , *v  and *w .

* * * *( )e
e nb nb e P E

u

a u a u b A p p  (6) 

* * * *( )n
n nb nb n P N

v

a v a v b A p p  (7) 

* * * *( )t
t nb nb t P T

w

a w a w b A p p  (8) 

--- The second inner iteration process for pressure question--- 

Step-8: Calculate the pseudo-velocities *u , *v and *w
defined in Equations (9), (10) and (11). 

*
*( ) ( )

/
nb nbTemp Temp Temp Temp Temp

e e P E e e P E
e u

a u b
u d p p u d p p

a
 (9) 
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*
*( ) ( )

/
nb nbTemp Temp Temp Temp Temp

n n P N n n P N
n v

a v b
v d p p v d p p

a
 (10) 

*
*( ) ( )

/
nb nbTemp Temp Temp Temp Temp

t t P T t t P T
t w

a w b
w d p p w d p p

a
 (11) 

It should be noted that the coefficients ae, an, at, anb and 
source terms b of Equations (6), (7), (8) and Equations (9), 
(10), (11) are the same as those of Equations (1), (2) and (3).  
Step -9: Solve the pressure Equation (12), and obtain the 
temporary pressure Tempp .

* * * * * *

( ) ,  ( ) , ( )
( ) ,   ( ) ,  ( )

( ) ( ) ( ) ( ) ( ) ( )

Temp Temp
P P nb nb

P E W N S T B

E e W w N n

S s T t B b

w e s n b t

a p a p b
a a a a a a a
a Ad a Ad a Ad
a Ad a Ad a Ad
b u A u A v A v A w A w A

 (12) 

It should be noted that in the second inner iteration process 
for pressure equation, the pressure needn’t be 
under-relaxed. 
Step-10: Calculate the temporary velocities Tempu ,

Tempv and Tempw  from Equations (9), (10) and (11) by the 
temporary pressure Tempp . Then one inner iteration step is 
finished and the next inner iteration step will be started. 
Step-11: Regard Tempu , Tempv , Tempw  and Tempp  calculated 
in Step-9 and Step-10 as the temporary velocity and 
pressure of the previous inner iteration step, denoted by 

PTempu , PTempv , PTempw and PTempp . Return to Step-8, and then 
all the superscripts * in steps 8 and 9 are replaced by 
PTemp, and the values of *u , *v  and *w are updated. 
Then pressure Equation (12) is re-solved. Repeat the 
iteration composed of steps 8, 9 and 10 until the iteration 
times are equal to the pre-specified times N2. After the 
second inner iteration process for pressure equation is 
finished, the final temporary velocities Tempu , Tempv  and 

Tempw  are regarded as the final velocities u, v and w of the 
current iteration level.  

------------------------------------------------------------------------ 

Step-12: Solve the discretization equations of the other 
scalar variables if necessary. 
Step-13: Regard the final velocities u, v and w as the initial 
velocities 0u , 0v and 0w  of the next iteration level, then 
return to Step-2 of the next iteration level. Repeat such 
iterative procedure until convergence is reached. 

It is interesting to note that in the IDEAL algorithm, as in 
the algorithm of SIMPLER and CLEAR, the pressure field 
used to solve the momentum equations, i.e., *p , is solved by 
the pressure equation. Since the algebraic equation is solved 
iteratively, an initial pressure field is required, and the 
goodness of this initial field has a profound effect on the 
solution convergence. The numerical practice provided in [6] 
revealed this important effect. Our numerical practices show 
that if the pressure results of the first inner iteration are taken 
as the initial field for the next level solution, the total solution 
procedure can be somewhat enhanced. 

In the IDEAL algorithm the first inner iteration times N1 
and the second inner iteration times N2 (hereafter N1&N2) 

can be adjusted. N1&N2 should be increased with the increase 
of the velocity under-relaxation factor. At a larger velocity 
under-relaxation factor the solution process may become very 
unstable, therefore, the inner iteration times need to be 
increased to ensure the convergence of solution process and to 
enhance the robustness. 

3. COMPARISON CONDITIONS 
AND CONVERGENCE CRITERION 

For making meaningful comparisons of the four algorithms, 
numerical comparison conditions and convergence criterion 
should be specified. In our study the comparison conditions 
and convergence criterion include: 

(1) Hardware and codes 
All the calculations in this paper are performed on the 

computer of CPU 2.01GHz and RAM 2.0GB along with 
FORTRAN 77 compiler. For the justness of comparison, the 
codes of SIMPLER, SIMPLEC, PISO and IDEAL algorithms 
are compiled under the same program structure. In order to 
reduce the truncated errors, double precision digital is adopted 
to implement computation in our codes. 

(2) Discretization scheme 
In order to guarantee the stability and accuracy of the 

numerical solution, SGSD scheme[25] is adopted, which is at 
least of second-order accuracy and absolutely stable. For 
stability of the solution process, the deferred-correction 
method is adopted, which was proposed in [26] and latter 
enhanced in [27]. 

(3) Solution method of the algebraic equations   
The algebraic equations are solved by the alternative 

direction implicit method (ADI). 
(4) Under-relaxation factor 
In the SIMPLER and IDEAL algorithms the pressure 

under-relaxation factor is set as 1.0. In the SIMPLEC and 
PISO algorithms the pressure needn’t be under-relaxed at 
all[9,12]. For the four algorithms, the same value is adopted 
for the velocity and temperature under-relaxation factors. For 
the convenience of presentation, the time step multiple E is 
used in the following presentation, which relates to the 
under-relaxation factor  by Equation (14)[9]: 

            (0 1)
1

E  (14) 

Some correspondence between  and E is presented in 
Table 1. It can be seen that with the time step multiple, we 
have a much wider range to show the performance of the 
algorithm in the high-value region of the under-relaxation 
factor. 

(5) Grid system 
For each problem the same uniform grid system is used for 

execution of the four algorithms. The details of each grid 
system will be presented individually. 

(6) Convergence criterion 
The adopted convergence criterion requires that both the 

relative maximum mass and the relative maximum u, v, w
-component momentum residuals are less than some 
pre-specified small values. 

Table 1. Some correspondence between  and E. 
0.1 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1 

E 0.111 1 9 19 24 32.3 49 99 infinite
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The relative maximum mass residual is expressed as: 

* * * * * *

Mass
MAX[|( ) -( ) +( ) -( ) | ( ) -( ) ]Rs w e s n b t

m

u A u A v A v A w A w A
q

 (15) 

where *u , *v  and *w  are the intermediate velocities of each 
iteration level, and mq  is the reference mass flow rate. For 
the open system, we take the inlet mass flow rate as the 
reference mass flow rate. For the closed system, we make a 
numerical integration for the mass flow rate along any section 
in the field to obtain the reference mass flow rate[23]. 

The relative maximum u, v, w-component momentum 
residuals are expressed as: 

0 0

Mom 2

MAX{| [ ( )] |}
Rs

e e nb nb e P E
nb

U
m

a u a u b A p p

u
 (16) 

0 0

Mom 2

MAX{| [ ( )] |}
Rs

n n nb nb n P N
nb

V
m

a v a v b A p p

u
 (17) 

0 0

Mom 2

MAX{| [ ( )] |}
Rs

t t nb nb t P T
nb

W
m

a w a w b A p p

u
 (18) 

where 0u , 0v  and 0w  are the initial velocities of each 
iteration level, and 2

mu  is the reference momentum. For the 
open system, we take the inlet momentum as the reference 
one . For the closed system, we make a numerical integration 
for the momentum along any section in the field to obtain the 
reference momentum[23]. 

(7) Double precision computations 
Even though our preliminary study in the single precision 

have also obtained quantitatively the same results, in order to 
reduce the possible effects of the truncation error and the 
numerical noise, the double precision is adopted in the 
comparison computation. 

4. NUMERICAL COMPARISONS 

In the following comprehensive comparisons are made 
among the SIMPLER, SIMPLEC, PISO and IDEAL 
algorithms for five three-dimensional problems of fluid flow 
and heat transfer, which are: 

(1) lid-driven cavity flow in a cubic cavity (problem 1); 
(2) lid-driven cavity flow in a cubic cavity with 

complicated structure (problem 2); 
(3) laminar fluid flow over a backward-facing step 

(problem 3); 
(4) laminar fluid flow through a duct with complicated 

structure (problem 4); 
(5) natural convection in a cubic cavity (problem 5). 
Problem 1 to problem 4 are fluid flow problems. Among 

these four problems, problem 1 and problem 2 belong to 
closed system; problem 3 and problem 4 belong to open 
system. Problem 5 is a velocity-temperature coupled heat 
transfer problem. All of the five problems are based on the 
following assumptions: laminar, incompressible, steady-state, 
and constant fluid property. For the fifth problem, the 
Boussinesq assumption was adopted[28]. 

4.1 Fluid flow problems 
4.1.1 Problems of closed system 
Problem 1: Lid-driven cavity flow in a cubic cavity

Lid-driven cavity flow in a cubic cavity has served in 
CFD/NHT as a benchmark problem for testing numerical  

H
o

z

y

x

u     lid

Fig. 2 Flow configuration of lid-driven cavity flow in a cubic 
cavity. 
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Fig. 3 Comparison of velocity profiles u and v along the 
central axes on plane z=0.5H for Re=1000. 

procedures for three-dimensional fluid flows[29-31]. The flow 
configuration is shown in Fig. 2. Calculations are conducted 
for Re=100~1000 and grid numbers=32×32×32 ~82×82×82, 
and the allowed residuals MassRs , MomRsU , MomRsV  and 

MomRsW  should be all less than 10-8. The Reynolds number is 
defined by 

lidu HRe  (19) 

In Fig. 3 the velocity profiles along the central lines on the 
plane z=0.5H are presented. As shown in this figure, the 
results calculated by IDEAL algorithm are in excellent 
agreement with those reported by Tang et al.[31]. This 
comparison gives some support to the reliability of the 
proposed 3D IDEAL algorithm and the developed code. From 
following comparisons with other well-documented 
algorithms (SIMPLER, SIMPLEC and PISO) further strong 
support to the present algorithm and code will be provided. 

Figs. 4, 5 and 6 show the computation time and robustness 
of IDEAL, SIMPLER, SIMPLEC and PISO algorithms for 
different grid numbers and different Reynolds numbers of  
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(b) Re=300 
Fig. 4 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=300 with grid 
number=32×32×32 of problem 1. 
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(b) Re=500 
Fig. 5 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=500 with grid 
number=52×52×52 of problem 1. 
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Fig. 6 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=1000 with grid 
number=82×82×82 of problem 1. 

problem 1. The inner iteration times N1&N2 in the IDEAL 
algorithm are displayed at the top of these Figures. For 
example 1&1 and 1&2 at the top of Fig. 4(a) show that in the 
two ranges of E the two inner iterative times are 1&1 and 1&2, 
respectively. From the three figures, following three features 
may be noted. First, N1 & N2 increase with the increase of 
time step multiple, i.e., with the under-relaxation factor. 
Second, among the four algorithms compared, the IDEAL 
algorithm is far more robust than SIMPLER, SIMPLEC and 
PISO algorithms, and it can converge almost at any time step 
multiple for any case in problem 1. The SIMPLER and PISO 
algorithms have the worst robustness and the SIMPLEC 
algorithm is something in between. Third, for the consumed 
computation time the SIMPLEC algorithm needs the largest, 
and the SIMPLER and PISO algorithms come next. The 
IDEAL algorithm needs the least. 

Table 2 shows the reduced ratio of computation time of 
IDEAL algorithm over SIMPLER, SIMPLEC and PISO 
algorithms at their own optimal time step multiples for 
different cases of problem 1. When each method works at its 
own optimal time step multiple, the IDEAL algorithm can 
reduce the computation time by 30.1-45.9% over SIMPLER 
algorithm, by 45.3-56.9% over SIMPLEC algorithm and by 
27.3-43.0% over PISO algorithm for problem 1. 

Table 2 Reduced ratio of computation time of IDEAL algorithm 
over SIMPLER, SIMPLEC and PISO algorithms at their 
own optimal time step multiples in problem 1. 

Grid number 32×32×32 52×52×52 82×82×82 
Re 100 300 100 500 100 1000

Reducing ratio
over SIMPLER 33.1% 30.1% 33.5% 35.3% 40.3% 45.9%

Reducing ratio
over SIMPLEC 54.0% 46.9% 50.0% 45.3% 51.4% 56.9%

Reducing ratio
over PISO 32.1% 27.3% 33.8% 33.2% 38.8% 43.0%
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Fig. 7 Flow configuration of lid-driven cavity flow in a cubic 
cavity with complicated structure. 
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Fig. 8 Comparison of velocity profiles u along the central 
axes y on plane z=0.5H for Re=500.

Problem 2: Lid-driven cavity flow in a cubic cavity with 
complicated structure

Problem 1 belongs to the simple closed system. The IDEAL 
algorithm shows its significant advantages over the SIMPLER, 
SIMPLEC and PISO algorithms for this simple closed system. 
In order to show the better performance of the IDEAL 
algorithm superior to the other three algorithms for a 
complicated closed system, problem 2 is especially designed. 
The flow configuration of problem 2 is shown in Fig. 7. Three 
blocks of baffle plates are inserted into the cubic cavity to 
make the flow configuration more complicated. The domain 
extension method[23] is applied for this irregular computation 
domain. i.e, the three blocks are supposed to be the fluids with 
very large viscosity and computations are conducted for the 
entire cubic.  

Calculations are conducted for Re=100~800 and grid 
numbers=52×52×52~82×82×82. The allowed residuals MassRs ,

MomRsU , MomRsV  and MomRsW  should be all less than 10-8. The 
Reynolds number is defined by 

lidu HRe  (20) 
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Fig. 9 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=500 with grid 
number=52×52×52 of problem 2. 
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Fig. 10 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=800 with grid 
number=82×82×82 of problem 2. 
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In Fig. 8 the velocity profiles u along the central line y on 
the plane z=0.5H from the four algorithms are presented. The 
results calculated by IDEAL algorithm are in excellent 
agreement with those calculated by the other three algorithms. 
Figs. 9 and 10 show the computation time and robustness of 
IDEAL, SIMPLER, SIMPLEC and PISO algorithms for 
different grid numbers and different Reynolds numbers of 
problem 2. From these two figures, we can find that the 
relative performances of different algorithms in the 
complicated closed system are almost the same as those in the 
simple closed system. Thus the IDEAL algorithm also shows 
its advantages for complicated closed systems. 

Table 3 shows the reduced ratio of computation time of 
IDEAL algorithm over SIMPLER, SIMPLEC and PISO 
algorithms at their own optimal time step multiples for 
different cases of problem 2. When each method works at its 
own optimal time step multiple, the IDEAL algorithm can 
reduce the computation time by 31.1-42.8% over SIMPLER 
algorithm, by 48.8-62.6% over SIMPLEC algorithm and by 
26.5-34.9% over PISO algorithm for problem 2. 

4.1.2 Problems of open system
Problem 3: Laminar fluid flow over a backward-facing step

Laminar fluid flow over a backward-facing step shown in 
Fig. 11 belongs to simple open system. It is another typical 
configuration widely adopted in computational fluid dynamics 
study. Again the domain extension method is used to deal with 
the solid step and solutions are performed for the entire region 
with 2H 8H 25H.

Calculations are conducted for Re=100~300 and grid 
numbers=127×32×63~202×52×63. The inflow velocity 
distribution is taken from Shah and London[32], and the 
fully-developed boundary condition is used at the outflow 
boundary. The residuals MassRs , MomRsU , MomRsV  and 

MomRsW  are all set to be less than 10-7. The Reynolds number 
is defined by 

inu HRe  (21) 

Table 3 Reduced ratio of computation time of IDEAL algorithm 
over SIMPLER, SIMPLEC and PISO algorithms at their 
own optimal time step multiples in problem 2. 

Grid number 52×52×52 82×82×82 
Re 100 500 100 800 

Reducing ratio 
over SIMPLER 31.1% 34.4% 36.5% 42.8%

Reducing ratio 
over SIMPLEC 48.8% 62.6% 57.7% 57.8%

Reducing ratio 
over PISO 26.5% 29.5% 34.9% 28.9%

Table 4 Reduced ratio of computation time of IDEAL algorithm 
over SIMPLER, SIMPLEC and PISO algorithms at their 
own optimal time step multiples in problem 3. 

Grid number 127×32×63 202×52×63
Re 100 300 100 

Reducing ratio 
over SIMPLER 25.2% 31.2% 33.1% 

Reducing ratio 
over SIMPLEC 66.5% 73.4% 54.4% 

Reducing ratio 
over PISO 27.3% 28.3% 26.2% 

RL
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z

y

Walls

Walls

25H
5H

8H

H

inu

2H

Fig. 11 Flow configuration of laminar fluid flow over a 
backward-facing step. 
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Fig. 12 The predicted reattached lengthen, LR, on plane z=4H
obtained by IDEAL algorithm and from reference[33]. 

Fig. 12 shows the predicted reattachment lengths, LR, on 
plane z=4H obtained, respectively, by IDEAL algorithm and 
from reference[33]. The results calculated by the IDEAL 
algorithm agree very well with those from[33]. Figs. 13 and 
14 show the computation time and robustness of IDEAL, 
SIMPLER, SIMPLEC and PISO algorithms for different grid  
numbers and different Reynolds numbers of problem 3. As 
shown in these two figures, the SIMPLER algorithm has the 
worst robustness, and the robustness of the PISO and 
SIMPLEC algorithms is a bit better. The IDEAL algorithm is  
the best. From Figs. 13 and 14 we can find that the IDEAL 
algorithm can converge almost at any time step multiple for 
any case of problem 3. As far as the consumed computation 
time is concerned, the SIMPLEC algorithm needs the largest, 
and the SIMPLER and PISO algorithms come next. The 
IDEAL algorithm needs the least. 

Table 4 shows the reduced ratio of computation time of 
IDEAL algorithm over SIMPLER, SIMPLEC and PISO 
algorithms at their own optimal time step multiples for 
different cases of problem 3. When each method works at its 
own optimal time step multiple, the IDEAL algorithm can 
reduce the computation time by 25.2-33.1% over SIMPLER 
algorithm, by 54.4-73.4% over SIMPLEC algorithm and by 
26.2-28.3% over PISO algorithm for problem 3. 

Problem 4: Laminar fluid flow through a duct with 
complicated structure 

Laminar fluid flow through a duct with complicated 
structure belongs to complicated open system. This problem is 
adopted to examine whether the IDEAL algorithm is still 
superior to SIMPLER, SIMPLEC and PISO algorithms in a 
complicated open system. The flow configuration of problem 
4 is shown in Fig. 15. Three blocks of baffle plates are 
inserted into the duct to make the flow configuration more 
complicated. The three solid blocks are treated by the domain 
extension method. 

Calculations are conducted for Re=100~500, grid 
numbers=150×20×20~190×29×29. The inflow velocity is  
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Fig. 13 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=300 with grid 
number=127×32×63 of problem 3. 
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Fig. 14 Comparison of computation time and robustness of 
IDEAL, SIMPLER, SIMPLEC and PISO algorithms for 
Re=100 with grid number=202×52×63 of problem 3. 

uniform, and the fully-developed boundary condition is used 
at the outflow. The residuals MassRs , MomRsU , MomRsV  and 

MomRsW are all set to be less than 10-7. The Reynolds number is 
defined by 

inu HRe  (22) 

Table 5 shows the predicted reattachment lengths, LR, on 
plane z=0.5H obtained by the four different algorithms. The 
results computed by the IDEAL algorithm are almost the same 
as those by the other three algorithms. Figs. 16 and 17 show 
the computation time and robustness of IDEAL, SIMPLER, 
SIMPLEC and PISO algorithms for different grid numbers 
and different Reynolds numbers of problem 4. From these two 
figures, we can find that the SIMPLEC algorithm in the 
complicated open system becomes less robust and less 
effective than in the simple open system, the performances of 
SIMPLER, SIMPLEC are in the middle and the IDEAL 

algorithm is the most robust and efficient. 
Table 6 shows the reduced ratio of computation time of 

IDEAL algorithm over SIMPLER, SIMPLEC and PISO 
algorithms at their own optimal time step multiples for 
different cases of problem 4. When each method uses its own 
optimal time step multiple, the IDEAL algorithm can reduce 
the computation time by 40.7-52.7% over SIMPLER 
algorithm, by 49.7-67.0% over SIMPLEC algorithm and by 
41.4-53.1% over PISO algorithm for problem 4. 

4.2 Velocity-temperature coupling problems
Problem 5: Natural convection in a cubic cavity

Natural convection in a cubic cavity is a velocity- 
temperature coupling problem, which is a classical fluid flow 
and heat transfer problem widely adopted in computational 
heat transfer community[34,35]. The flow configuration of 
problem 5 is shown in Fig. 18. The cubic cavity has four 
adiabatic walls with two vertical walls being maintained at 
constant but different temperatures. 

Calculations are conducted for Ra=104~106 and grid 
numbers=30×30×30~80×80×80 with the residuals MassRs ,

MomRsU , MomRsV  and MomRsW  being all less than 10-7. The 
Rayleigh number is defined by 

3( )H Cg H T TRa
a

 (23) 

In Table 7, a comparison is given between the solutions 
from the IDEAL algorithm and the results from[34, 35]. The 
comparison concerns the mean Nusselt, Num, which is defined 
as 

Local Local0
m 2

( ( , ) | ( , ) | )

2
x x HNu y z Nu y z dydz

Nu
H

 (24) 

where, 

Local =0 or =H
( / )( , )| =x x

H C

T x HNu y z
T T  (25) 

Table 5 Predicted reattachment lengths on plane z=0.5H in 
problem 4. 

Re IDEAL SIMPLER SIMPLEC PISO 
100 0.9725 0.9728 0.9730 0.9725 
300 2.1099 2.1095 2.1100 2.1095 
500 3.2426 3.2495 3.2525 3.2423 

Table 6 Reduced ratio of computation time of IDEAL algorithm 
over SIMPLER, SIMPLEC and PISO algorithms at their 
own optimal time step multiples in problem 4. 

Grid number 150×20×20 190×29×29 
Re 100 300 100 500 

Reducing ratio 
over SIMPLER 49.4% 52.7% 40.7% 50.5%

Reducing ratio 
over SIMPLEC 49.7% 58.6% 67.0% 58.9%

Reducing ratio 
over PISO 48.8% 53.1% 41.4% 47.3%

Table 7 Comparison of solutions with previous works for 
different Ra-values of Problem 5. 

Ra 104 105 106

Fusegi et al.[34] 2.1000 4.3610 8.770 
Wakashima et al.[35] 2.0814 4.4309 8.8681 

IDEAL 2.0842 4.4048 8.8005 
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Fig. 15 Flow configuration of laminar fluid flow through a 
duct with complicated structure. 
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(b) Re=300 
Fig. 16 Comparison of computation time and robustness of 

IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for (a) Re=100 and (b) Re=300 with grid number 
=150×20×20 of problem 4. 
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Fig.18 Flow configuration of natural convection in a cubic 
cavity.

             (a)                      (b)            
Fig. 19 Temperatures at the plane z=0.5H for Ra=106, obtained 

(a) from reference[35], (b) by IDEAL algorithm. 

In Fig. 19, the temperatures at the plane z=0.5H for Ra=106

are shown. From the figure, we can find that the temperature 
field calculated by IDEAL algorithm agrees very well with 
that from the reference[35]. 

Figs. 20, 21 and 22 show the computation time and 
robustness of IDEAL, SIMPLER, SIMPLEC and PISO 
algorithms for different grid numbers and different Rayleigh 
numbers of problem 5. From these figures, we can find that 
the performances of different algorithms in velocity- 
temperature coupling problems are almost the same as those in 
decoupled fluid flow problems, for example, problem 1 and 
problem 2. The IDEAL algorithm is the most robust and most 
efficient one among the four algorithms compared. 

Table 8 shows the reduced ratio of computation time of 
IDEAL algorithm over SIMPLER, SIMPLEC and PISO 
algorithms at their own optimal time step multiples for 
different cases of problem 5. When each method uses its own 
optimal time step multiple, the IDEAL algorithm can reduce 
the computation time by 12.9-22.4% over SIMPLER 
algorithm, by 48.3-67.9% over SIMPLEC algorithm and by 
10.7-13.7% over PISO algorithm for problem 5. 

Table 8 Reduced ratio of computation time of IDEAL algorithm 
over SIMPLER, SIMPLEC and PISO algorithms at their 
own optimal time step multiples in problem 5. 

Grid number 30×30×30 50×50×50 80×80×80
Ra 104 105 106

Reducing ratio
over SIMPLER 22.4% 12.9% 13.7% 

Reducing ratio
over SIMPLEC 48.3% 63.7% 67.9% 

Reducing ratio
over PISO 13.7% 10.7% 11.9% 

Fig.17 Comparison of computation time and robustness of
IDEAL, SIMPLER, SIMPLEC and PISO algorithms
for (a) Re=100 and (b) Re=500 with grid number
=190×29×29 of problem 4.
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Fig. 20 Comparison of computation time and robustness of 
IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for Ra=104 with grid number=30×30×30 of problem 5. 

10 10020 50 200 50063
E

1000

2000

3000

800

300

200

Time
IDEAL
SIMPLER
SIMPLEC
PISO

1&1 1&2

Fig. 21 Comparison of computation time and robustness of 
IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for Ra=105 with grid number=50×50×50 of problem 5. 
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Fig. 22 Comparison of computation time and robustness of 
IDEAL, SIMPLER, SIMPLEC and PISO algorithms 
for Ra=106 with grid number=80×80×80 of problem 5. 

4.3 Interface capture by VOSET in conjunction with 
IDEAL algorithm

Recently we have proposed an improved interface capture 
method, called VOSET[35], which is an appropriate 
combination of the well-know VOF[36] and Level-Set[37] 
methods. VOSET and accurately predict the curvature of an 
interface (advantage of Level-Set method) while still keep 
mass conservation characteristics (advantage of VOF). In 
addition the computational efficiency of VOSET is quite high. 
To predict the interface of two-phase flow the velocity fields 
should be first predicted and usually the fractional step method 
is used. However, for complicated geometry this method is not 
convenient. The SIMPLE–series algorithms provide another 
choice. The drawback is slow convergence rate. We have 
incorporated the IDEAL algorithm with Bi-CGSTAB[38] for 
the solution of the algebraic equation for solving the velocity 

field and adopt VOSET for the interface capture. Very 
successful results are obtained in both the acceleration of the 
convergence rate and the extension of parameter range for the 
interface capturing. For the upward moving of a single bubble 
in a static liquid volume, some comparisions are provided in 
Table 9, where the dimensionless parameters Eo an M are 
number of Morton and Eotvos, respectively, and defined by: 

2

4 3

( ) / ;

/
e l g

l l

Eo gd

M g
 (26) 

From Table 9 it can be seen that the new prediction method 
combined by IDEAL/VOSET and Bi-CGSATB is very 
efficient.

4. CONCLUSIONS

In the present paper the performance of the IDEAL 
algorithm for three-dimensional incompressible fluid flow and 
heat transfer problems has been analyzed by a systemic 
comparison with three other most widely-used algorithms 
(SIMPLER, SIMPLEC and PISO). The main conclusions are 
as follows. 

(1) The IDEAL algorithm is the most robust and most 
efficient one among the four algorithms compared. 

(2) The IDEAL algorithm can converge almost at any time 
step multiple for the five problems studied. 

(3) When each algorithm works at its own optimal time 
step multiple, the IDEAL algorithm can reduce the 
computation time by 12.9-52.7% over SIMPLER 
algorithm, by 45.3-73.4% over SIMPLEC algorithm 
and by 10.7-53.1% over PISO algorithm. 

(4) The combination of IDEAL-VOSET-Bi-CGSTAB 
provides an very efficient interface capturing method. 

The extensions of the 3D IDEAL algorithm to 
non-orthogonal curvilinear systems and to unstructured grid 
systems are now underway in the authors’ group and will be 
reported elsewhere. 
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Table 9 CPU time comparisons. 
(a) Case 1: Eo=1.0, M=0.001, grid system 150 50 

N1 & N2 of IDEAL 1&1 2&2 3&3 4&4 
Ratio of CPU time 

reduction compared 
with SIMPLER+ADI

78.9% 84.7% 83.5% 80.7%

(b) Case 2: Eo=10.0, M=0.1, grid system 150 50 
N1 & N2 of IDEAL 1&1 2&2 3&3 4&4 
Ratio of CPU time 

reduction compared 
with SIMPLER+ADI

84.7% 88.5 % 88.1% 85.9%

(c) Case 3: Eo=100.0, M=1000.0, grid system 150 50 
N1 & N2 of IDEAL 1&1 2&2 3&3 4&4 
Ratio of CPU time 

reduction compared 
with SIMPLER+ADI

82.2% 86.5% 84.8% 82.2%
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