DOI QR코드

DOI QR Code

급속 압축장치(RCM)의 압축 조건에 따른 최대 압력 변화에 관한 실험적 연구

Experimental Study on Peak-Pressure Variation Due to Compression by Using RCM

  • 김혜민 (한국과학기술원 항공우주공학) ;
  • 김학영 (한국과학기술원 항공우주공학) ;
  • 백승욱 (한국과학기술원 항공우주공학)
  • 투고 : 2010.10.13
  • 심사 : 2010.11.19
  • 발행 : 2011.02.01

초록

RCM(Rapid Compression Machine)은 엔진 내부의 복잡한 연소현상을 연구하는 데 적합한 장치이다. 엔진의 연구를 위해서는 내부의 최대압력을 측정하는 것이 중요하다. 그 이유는 최대압력이 내부연료의 연소특성에 큰 영향을 끼치기 때문이며, 연소실 내부의 최대온도가 최대 압력에 의해 추정되기 때문이다. 그러나 최대압력은 실린더 벽면과의 열전달로 인해 정량적으로 계산하기 어려우며 보통 실험적인 방법을 통해 측정하고 있다. 본 연구를 통해 RCM의 구동시간에 따른 연소실의 최대압력과의 관계를 실험적으로 확인하고, 실험결과를 바탕으로 최대압력과 구동시간에 관한 일반적인 공식을 도출한다.

RCM is used to clarify the complex phenomena of engine combustion. In order to describe engine combustion, several significant experimental studies are considered. Prediction of the peak pressure is very important since it has a significant influence on engine combustion. In addition, peak-temperature variation can be calculated from the measured peak pressure by using the fundamental thermodynamic relation. When the RCM is in operation, heat transfer occurs through the cylinder wall. Because of this phenomenon, it is difficult to determine the peak pressure without employing the case by case experimental method. The goal of this study is to evaluate the peak pressure analytically. We conduct an experiment to confirm the relationship between the peak pressure and some parameters. Using the results of the peak pressure variation experiment, we develop a general equation that be used to calculate the peak pressure as a function of operation time and compression ratio.

키워드

참고문헌

  1. Jung, Y. I. and Yoon, J. G., 2000, "Automobile and Environment," Han-sung Univ press, Korea, pp. 113-198.
  2. Lee, D. Y., 1997, "Auto Ignition Measurements and Modeling in a Rapid Compression Machine," MIT, Ph.D thesis.
  3. Griffiths, J. F., Clarkson, J., Macnamara, J. P. and Whitaker, B. J., 2001, "Temperature Fields During the Development of Combustion in a Rapid Compression Machine," Combustion and Flame, Vol. 125, No. 3, pp. 1162-1175. https://doi.org/10.1016/S0010-2180(01)00236-X
  4. Mittal, G. and Sung, C., 2006, "Aerodynamics Inside a Rapid Compression Machine," Combustion and Flame, Vol. 145, No. 1-2, pp. 160-180. https://doi.org/10.1016/j.combustflame.2005.10.019
  5. Shiga, S., Ozone, S., Machacon, H. T. C., Karasawa, T., Nakamura, H., Ueda, T., Jingu, N., Huang, Z., Tsue, M. and Kono, M., 2002, "A Study of the Combustion and Emission Characteristics of Compressed-Natural-Gas Direct-Injection Stratified Combustion Using a Rapid-Compression-Machine," Combustion and Flame, Vol. 129, No. 1-2, pp. 1-10. https://doi.org/10.1016/S0010-2180(01)00367-4
  6. Gallagher, S. M., Curran, H. J., Metcalfe, W. K., Healy, D., Simmie, J. M. and Bourque, G., 2008, "A Rapid Compression Machine Study of the Oxidation of Propane in the Negative Temperature Coefficient Regime," Combustion and Flame, Vol. 153, No. 1-2, pp. 316-333. https://doi.org/10.1016/j.combustflame.2007.09.004
  7. Gaurav, M., 2006, "A Rapid Compression Machine-Design, Characterization, and Auto Ignition Investigations," Case Western Reserve University, Ph.D thesis
  8. Gurrie, I. G., 1993, "Fundamental Mechanics of Fluids," MarcelDekker,Inc, thirdedition
  9. Richard, E. S., Claus, B. and Gordon, J. V. W., 2003, "Fundamentals of Thermodynamics," Wiley, Sixthedition.