DOI QR코드

DOI QR Code

컨덕턴스의 개념을 사용한 공압관 시스템의 유량 예측

Flow Rate Prediction of Pneumatic Pipe System Using Concept of Conductance

  • Kim, Jin-Hyeon (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Deng, Ruoyu (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Heuy-Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 투고 : 2014.01.23
  • 심사 : 2014.03.12
  • 발행 : 2014.05.01

초록

컨덕턴스는 유동저항의 반대되는 개념으로써, 광범위하게 유동지표로써 현재 사용되고 있다. 하지만, 유동 컨덕턴스 연구들은 지금까지 매우 드물며, 압축 공기의 표준화 장치에 대한 체계적인 연구가 필요하다. 본 연구에서는 2차 방정식 난류모델을 이용한 압축성 N-S 방정식을 적용하여 수치해석적(CFD) 연구를 수행하였다. 본 CFD 결과는 기존의 실험 데이터를 통해 검증되었으며 공압 배관의 입구 및 출구에서의 컨덕턴스와 마찰 계수의 값은 유량을 평가하기 위해 사용되었다. 본 결과는 컨덕턴스가 공압 배관의 입구 및 출구에서의 압력 비율에 의존한다는 것을 보여준다.

Conductance is a concept contrary to flow resistance and is extensively used as a flow index on how easily fluid is transported through a pneumatic pipe or fluid device. However, research on flow conductance is very rare to date, and a systematic investigation is needed for the standardization of pneumatic devices. In the present study, a computational fluid dynamics method was applied to solve the compressible Navier-Stokes equations with two-equation turbulence models. The present CFD results were validated with existing experimental data. The conductance values and friction factors at the inlet and outlet of a pneumatic pipe were used to assess the flow rates. The present results showed that the conductance depends on the pressure ratio at the inlet and outlet of a pipe.

키워드

참고문헌

  1. Chabane, S., Sesmat, S., Hubert, D., Gautier, D., Wartelle C. and Bideaux E., 2013, "Mass Flow Rate of Pneumatic Pipes Using Friction Factor," Journal of Systems and Control Engineering, to the Published.
  2. Sesmat, S., Lecerf, J. and Gautier, D., 2007, "Calculation Method for Determining the Flow-Rate Characteristics of a Group of Pneumatic Components," International Scientific-technical Conference: Hydraulics and Pneumatics, pp. 409-419.
  3. ISO 6358 International Standard., 1989, Pneumatic Fluid Power Components Using Compressible Fluids - Determination of Flow Rate Characteristics.
  4. Senoo, M., Zhang, H. and Oneyama, N., 2002, "Study and Suggestions on Pneumatic Component Flow-Rate Characteristics," Proceedings of the Fifth JFPS Fluid Power International Symposium, Nara, Japan, pp. 67-72.
  5. Kagawa, T., Cai, M. and Kawashima, K., 2004, "Extended Representation of Flow-Rate Characteristics for Pneumatic Components and Its Measurement Using Isothermal Discharge Method," Power Transmission and Motion Control (PTMC'04), pp. 271-282.
  6. Satoh, K., Kawakami, Y. and Nakano, K., 2008, "Estimation of a Critical Pressure Ratio of a Pneumatic Pipe Line and Its Simulation," In: Proceeding of the 7th JFPS Symposium on Fluid Power, Toyama, Japan, pp. 413-417.